Cellular processes such as cell cycle progression, mitosis, apoptosis, and cell migration are characterized by well-defined events that are modulated as a function of time. Measuring these events in the context of time and its perturbation by small molecule compounds and RNAi can provide mechanistic information about cellular pathways being affected. We have used impedance-based time-dependent cell response profiling (TCRP) to measure and characterize cellular responses to antimitotic compounds or siRNAs. Our findings indicate that small molecule perturbation of mitosis leads to unique TCRP. We have further used this unique TCRP signature to screen 119 595 compound library and identified novel antimitotic compounds based on clustering analysis of the TCRPs. Importantly, 113 of the 117 hit compounds in the TCRP antimitotic cluster were confirmed as antimitotic based on independent assays, thus establishing the robust predictive nature of this profiling approach. In addition, potent and novel agents that induce mitotic arrest either by directly interfering with tubulin polymerization or by other mechanisms were identified. The TCRP approach allows for a practical and unbiased phenotypic profiling and screening tool for small molecule and RNAi perturbation of specific cellular pathways and time resolution of the TCRP approach can serve as a complement for other existing multidimensional profiling approaches.