Crown Area as a Parameter for Biomass Estimation of Croton sonderianus Müll. Arg.

ABSTRACT Current tree biomass estimation techniques generally use remote sensing data and allometric models for validation, which relate non-destructive parameters to plant biomass, usually employing diameter at the plant base or breast height and plant height. In the Caatinga Biome, many plants present multiple stems, thus making it difficult to measure the plant diameter, and lost branches, which are difficult to correct for. Hence, there is a need for suitable models for Caatinga plants, as well as studies on the possibility of using other parameters. For this study, plant and branch basal diameter, plant height, and crown area of Croton sonderianus plants were measured, and plants were also collected and weighed. Several classic models and their variations were tested. The best models were variations of Naslund (R2 = 0.92; rmse = 1,221) and Schumacher & Hall (R2 = 0.92; rmse = 1,217). Plant height and crown area enables a better biomass estimation than using plant or branch basal diameter.

[1]  D. Huisingh,et al.  Combating desertification in China: Monitoring, control, management and revegetation , 2018 .

[2]  Jonathan William Trautenmüller,et al.  Vertical distribution of aboveground biomass in a Seasonal Deciduous Forest. , 2017 .

[3]  Mateus Niroh Inoue Sanquetta,et al.  ESTIMATIVA DA ALTURA E DO VOLUME EM POVOAMENTOS JOVENS DE RESTAURAÇÃO FLORESTAL EM RONDÔNIA , 2017 .

[4]  R. Ponce-Hernandez,et al.  Assessing and Monitoring Forest Degradation in a Deciduous Tropical Forest in Mexico via Remote Sensing Indicators , 2017 .

[5]  Jean Pierre Cavalli,et al.  DENSITY MANAGEMENT DIAGRAMS FOR STANDS OF Eucalyptus grandis W. Hill RS, BRAZIL , 2017 .

[6]  I. Woodhouse,et al.  Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the Mediterranean ecosystem , 2017 .

[7]  Marcelo Ribeiro Viola,et al.  ESTIMATIVA DE PARÂMETROS FLORESTAIS EM ÁREA DE CERRADO A PARTIR DE IMAGENS DO SENSOR LANDSAT 8 , 2017 .

[8]  M. Ikusemoran,et al.  Detecting and Monitoring Desertification Indicators in Yobe State, Nigeria , 2017 .

[9]  R. B. C. Ferreira,et al.  Ajuste de modelos matemáticos lineares e não lineares para estimativa de biomassa e nutrientes de Anadenanthera colubrina var. cebil no semiárido pernambucano , 2016 .

[10]  S. Saha,et al.  Above-Ground Biomass, Nutrients and Carbon in Aegiceras corniculatum of the Sundarbans , 2016 .

[11]  Aldenir Teixeira da Gama,et al.  Estimativas Volumétricas y Hipsométricas para el Barbatimão en el Norte de Minas Gerais , 2015 .

[12]  H. Neufeldt,et al.  Allometric equations for estimating biomass in agricultural landscapes: I. Aboveground biomass , 2012 .

[13]  H. Parvaresh,et al.  Establishing Allometric Relationship Using Crown Diameter for the Estimation of above-Ground Biomass of Grey Mangrove, Avicennia Marina (Forsk)Vierh in Mangrove Forests of Sirik, Iran , 2012 .

[14]  C. Pérez-Cruzado,et al.  Improvement in accuracy of aboveground biomass estimation in Eucalyptus nitens plantations: Effect of bole sampling intensity and explanatory variables , 2011 .

[15]  T. Verwijst,et al.  Sprouting and shoot development of Sonchus arvensis in relation to initial root size , 2011 .

[16]  A. Franco,et al.  FOREST RESTORATION: FROM THE DIAGNOSTIC OF DEGRADATION TO THE SELECTION OF ECOLOGICAL INDICATORS TO THE MONITORING OF ACTIVITIES. , 2010 .

[17]  H. Tonini,et al.  Crescimento da Teca (Tectona grandis) em Reflorestamento na Amazônia Setentrional , 2010 .

[18]  C. R. Sanquetta,et al.  EQUAÇÕES PARA ESTIMATIVA DA BIOMASSA INDIVIDUAL DE Nectandra grandiflora Ness (CANELA-AMARELA) , 2009 .

[19]  E. Sampaio,et al.  Biomassas de partes aéreas em plantas da caatinga , 2008 .

[20]  Elcida de Lima Araújo,et al.  Flora e estrutura da vegetao arbustivo-arbrea de uma rea de caatinga do Serid, RN, Brasil , 2005 .

[21]  Carlos Pedro Boechat Soares,et al.  Equações para estimar a quantidade de carbono na parte aérea de árvores de eucalipto em Viçosa, Minas Gerais , 2002 .