Clustering of proximity data using belief functions

[1]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[2]  M. Roubens Pattern classification problems and fuzzy sets , 1978 .

[3]  M. P. Windham Numerical classification of proximity data with assignment measures , 1985 .

[4]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[5]  Henri Prade,et al.  Representation and combination of uncertainty with belief functions and possibility measures , 1988, Comput. Intell..

[6]  James C. Bezdek,et al.  Relational duals of the c-means clustering algorithms , 1989, Pattern Recognit..

[7]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[8]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[9]  James C. Bezdek,et al.  Uncertainty measures for evidential reasoning I: A review , 1992, Int. J. Approx. Reason..

[10]  James C. Bezdek,et al.  Uncertainty measures for evidential reasoning II: A new measure of total uncertainty , 1993, Int. J. Approx. Reason..

[11]  James C. Bezdek,et al.  Nerf c-means: Non-Euclidean relational fuzzy clustering , 1994, Pattern Recognit..

[12]  Joachim M. Buhmann,et al.  Multidimensional Scaling and Data Clustering , 1994, NIPS.

[13]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Thierry Denoeux,et al.  A k-nearest neighbor classification rule based on Dempster-Shafer theory , 1995, IEEE Trans. Syst. Man Cybern..

[15]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[16]  Ronald R. Yager,et al.  On the normalization of fuzzy belief structures , 1996, Int. J. Approx. Reason..

[17]  S. Sen,et al.  Clustering of relational data containing noise and outliers , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[18]  G. Klir,et al.  Uncertainty-based information: Elements of generalized information theory (studies in fuzziness and soft computing). , 1998 .

[19]  Klaus Obermayer,et al.  Classi cation on Pairwise Proximity , 2007 .

[20]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[21]  R. C. Williamson,et al.  Classification on proximity data with LP-machines , 1999 .

[22]  George J. Klir,et al.  Uncertainty-Based Information , 1999 .