PTPN 2 negatively regulates oncogenic JAK 1 in T-cell acute lymphoblastic leukemia

1Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium; 2Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium; 3Inserm U944 and Hematology Laboratory, Hôpital Saint-Louis, Institut Universitaire d’Hématologie, Université Paris Diderot, Paris, France; 4National Center for Scientific Research (CNRS) Unité Mixte de Recherche (UMR) 8147 and Department of Hematology, Hôpital Necker-Enfants-Malades Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-5 Descartes, Paris, France; 5Ludwig Institute for Cancer Research, Brussels, Belgium; 6de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; 7Division of Hematology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; 8Department of Pediatrics, Erasmus Medical Center-Sophia, Rotterdam, The Netherlands; 9Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy; 10Division of Hematology, Department of Cellular Biotechnologies and Hematology, La Sapienza University of Rome, Rome, Italy; and 11Munich Leukemia Laboratory, Munich, Germany

[1]  J. Cools,et al.  MOHITO, a novel mouse cytokine-dependent T-cell line, enables studies of oncogenic signaling in the T-cell context , 2011, Haematologica.

[2]  R. Mesa Ruxolitinib, a selective JAK1 and JAK2 inhibitor for the treatment of myeloproliferative neoplasms and psoriasis. , 2010, IDrugs : the investigational drugs journal.

[3]  Donna Neuberg,et al.  Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. , 2010, Blood.

[4]  A. Hagemeijer,et al.  ABL1 rearrangements in T‐Cell acute lymphoblastic leukemia , 2010, Genes, chromosomes & cancer.

[5]  H. Dombret,et al.  JAK1 mutations are not frequent events in adult T‐ALL: a GRAALL study , 2010, British journal of haematology.

[6]  J. Renauld,et al.  ALL-associated JAK1 mutations confer hypersensitivity to the antiproliferative effect of type I interferon. , 2009, Blood.

[7]  A. Ferrando,et al.  Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia , 2009, Nature Genetics.

[8]  L. Chin,et al.  High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. , 2009, Blood.

[9]  H. Dombret,et al.  NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. , 2009, Blood.

[10]  Y. Chung,et al.  Somatic Mutations of JAK1 and JAK3 in Acute Leukemias and Solid Cancers , 2008, Clinical Cancer Research.

[11]  E. Clappier,et al.  Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia , 2008, The Journal of experimental medicine.

[12]  M. Tremblay,et al.  PTP1B and TC-PTP: regulators of transformation and tumorigenesis , 2008, Cancer and Metastasis Reviews.

[13]  I. Lossos,et al.  T-Cell Protein Tyrosine Phosphatase, Distinctively Expressed in Activated-B-Cell-Like Diffuse Large B-Cell Lymphomas, Is the Nuclear Phosphatase of STAT6 , 2007, Molecular and Cellular Biology.

[14]  Sungjoon Kim,et al.  Ba/F3 cells and their use in kinase drug discovery , 2007, Current opinion in oncology.

[15]  C. Pui,et al.  Treatment of acute lymphoblastic leukemia. , 2006, The New England journal of medicine.

[16]  F. Sigaux,et al.  HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). , 2005, Blood.

[17]  Peter Marynen,et al.  Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). , 2005, Blood.

[18]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[19]  A. Ferrando,et al.  Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia , 2004, Nature Genetics.

[20]  M. Tremblay,et al.  The T Cell Protein Tyrosine Phosphatase Is a Negative Regulator of Janus Family Kinases 1 and 3 , 2002, Current Biology.

[21]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[22]  F. Sigaux,et al.  Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. , 1994, Blood.

[23]  B. Sefton,et al.  Oncogenic activation of the Lck protein accompanies translocation of the LCK gene in the human HSB2 T-cell leukemia , 1994, Molecular and cellular biology.

[24]  A. Pardanani JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials , 2008, Leukemia.

[25]  P. Marynen,et al.  Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. , 2005, Haematologica.

[26]  Yu-Rong Fu,et al.  Identification of a Nuclear Stat 1 Protein Tyrosine Phosphatase , 2002 .