Homogeneous Self-dual Algorithms for Stochastic Second-Order Cone Programming

Jin et al. (in J. Optim. Theory Appl. 155:1073–1083, 2012) proposed homogeneous self-dual algorithms for stochastic semidefinite programs with finite event space. In this paper, we utilize their work to derive homogeneous self-dual algorithms for stochastic second-order cone programs with finite event space. We also show how the structure in the stochastic second-order cone programming problems may be exploited so that the algorithms developed for these problems have less complexity than the algorithms developed for stochastic semidefinite programs mentioned above.

[1]  Elisabetta Allevi,et al.  Stochastic Second-Order Cone Programming in Mobile Ad Hoc Networks , 2009 .

[2]  Farid Alizadeh,et al.  Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..

[3]  Baha Alzalg,et al.  Stochastic second-order cone programming: Applications models , 2012 .

[4]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[5]  伊師 英之,et al.  書評 J. Faraut and A. Koranyi: Analysis on Symmetric Cones (Oxford Math. Monogr.) , 2006 .

[6]  F. Potra,et al.  On homogeneous interrior-point algorithms for semidefinite programming , 1998 .

[7]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[8]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[9]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[10]  K. A. Ariyawansa,et al.  Logarithmic barrier decomposition-based interior point methods for stochastic symmetric programming , 2014 .

[11]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[12]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[13]  K. A. Ariyawansa,et al.  A preliminary set of applications leading to stochastic semidefinite programs and chance-constrained semidefinite programs , 2011 .

[14]  K. A. Ariyawansa,et al.  Homogeneous Self-dual Algorithms for Stochastic Semidefinite Programming , 2012, J. Optim. Theory Appl..

[15]  K. A. Ariyawansa,et al.  Stochastic semidefinite programming: a new paradigm for stochastic optimization , 2006, 4OR.

[16]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[17]  John R. Birge,et al.  Stochastic Programming Computation and Applications , 1997, INFORMS J. Comput..

[18]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[19]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[20]  K. A. Ariyawansa,et al.  A class of polynomial volumetric barrier decomposition algorithms for stochastic semidefinite programming , 2010, Math. Comput..