A philosophy for the modelling of realistic nonlinear systems

A nonlinear dynamical system is modelled as a nonlinear mapping from a set of input signals into a corresponding set of output signals. Each signal is specified by a set of real number parameters, but such sets may be uncountably infinite. For numerical simulation of the system each signal must be represented by a finite parameter set and the mapping must be defined by a finite arithmetical process. Nevertheless the numerical simulation should be a good approximation to the mathematical model. We discuss the representation of realistic dynamical systems and establish a stable approximation theorem for numerical simulation of such systems.