Functional complexity: The source of value in biodiversity

Biodiversity may be seen as a scientific measure of the complexity of a biological system, implying an information basis. Complexity cannot be directly valued, so economists have tried to define the services it provides, though often just valuing the services of ‘key’ species. Here we provide a new definition of biodiversity as a measure of functional information, arguing that complexity embodies meaningful information as Gregory Bateson defined it. We argue that functional information content (FIC) is the potentially valuable component of total (algorithmic) information content (AIC), as it alone determines biological fitness and supports ecosystem services. Inspired by recent extensions to the Noah's Ark problem, we show how FIC/AIC can be calculated to measure the degree of substitutability within an ecological community. Establishing substitutability is an essential foundation for valuation. From it, we derive a way to rank whole communities by Indirect Use Value, through quantifying the relation between system complexity and the production rate of ecosystem services. Understanding biodiversity as information evidently serves as a practical interface between economics and ecological science.

[1]  J. Tschirhart,et al.  Ecosystems, externalities, and economies , 1992, Environmental and Resource Economics.

[2]  R. Margalef,et al.  Information theory in ecology , 1958 .

[3]  G. Heal,et al.  Valuing the future : economic theory and sustainability , 1998 .

[4]  A. Rossberg,et al.  The top-down mechanism for body-mass-abundance scaling. , 2008, Ecology.

[5]  B. Norton Scale and Biodiversity Policy: A Hierarchical Approach, with Robert E. Ulanowicz , 2002 .

[6]  H. Maturana,et al.  Autopoiesis and Cognition : The Realization of the Living (Boston Studies in the Philosophy of Scie , 1980 .

[7]  B. Ebenman,et al.  Biodiversity and persistence of ecological communities in variable environments , 2008 .

[8]  A. Rossberg,et al.  Size-selective fishing drives species composition in the Celtic Sea , 2012 .

[9]  Robert E. Ulanowicz,et al.  Scale and Biodiversity Policy: A Hierarchical Approach , 1994 .

[10]  Åsa Jansson,et al.  Accounting for Ecosystems , 2009 .

[11]  E. Schrödinger What is life? : the physical aspect of the living cell , 1944 .

[12]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[13]  Rónán O'Beirne,et al.  The Blackwell Guide to the Philosophy of Computing and Information , 2004 .

[14]  R. D. Groot,et al.  Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making , 2010 .

[15]  Gregory J. Chaitin,et al.  Information, Randomness and Incompleteness - Papers on Algorithmic Information Theory; 2nd Edition , 1987, World Scientific Series in Computer Science.

[16]  Christophe Béné,et al.  Contribution values of biodiversity to ecosystem performances: A viability perspective , 2008 .

[17]  Luciano Floridi,et al.  Is Semantic Information Meaningful Data? , 2005, Philosophy and Phenomenological Research.

[18]  P. Ehrlich,et al.  The Preservation of Species: The Value of Biological Diversity , 1987 .

[19]  A. Purvis,et al.  Getting the measure of biodiversity , 2000, Nature.

[20]  Robert E. Ulanowicz,et al.  Quantifying sustainability: Resilience, efficiency and the return of information theory , 2009 .

[21]  J. Spangenberg,et al.  Precisely incorrect? Monetising the value of ecosystem services § , 2010 .

[22]  John Maynard Smith,et al.  The Concept of Information in Biology , 2000, Philosophy of Science.

[23]  Eoin J. O’Gorman,et al.  Perturbations to trophic interactions and the stability of complex food webs , 2009, Proceedings of the National Academy of Sciences.

[24]  C. Adami,et al.  Evolution of Biological Complexity , 2000, Proc. Natl. Acad. Sci. USA.

[25]  M. Weitzman The Noah's Ark Problem , 1998 .

[26]  P. Dasgupta,et al.  Net national product, wealth, and social well-being , 2000, Environment and Development Economics.

[27]  A. Mooers Conservation biology: The diversity of biodiversity , 2007, Nature.

[28]  Lael Parrott,et al.  Measuring ecological complexity , 2010 .

[29]  Marcia J. Bates,et al.  Information and knowledge: an evolutionary framework for information science , 2005 .

[30]  Seth Lloyd,et al.  Information measures, effective complexity, and total information , 1996 .

[31]  R. Crozier Preserving the Information Content of Species: Genetic Diversity, Phylogeny, and Conservation Worth , 1997 .

[32]  Donald Favareau,et al.  Form, Substance and Difference , 2009 .

[33]  Seth Lloyd,et al.  Effective Complexity , 1995 .

[34]  Villy Christensen,et al.  ECOPATH II − a software for balancing steady-state ecosystem models and calculating network characteristics , 1992 .

[35]  Carlo Ricotta,et al.  Through the Jungle of Biological Diversity , 2005, Acta biotheoretica.

[36]  J. Bergh,et al.  Economic valuation of biodiversity: sense or nonsense? , 2001 .

[37]  Sahotra Sarkar,et al.  Defining “Biodiversity”; Assessing Biodiversity , 2002 .

[38]  C. Tsallis,et al.  Nonextensive Entropy: Interdisciplinary Applications , 2004 .

[39]  Jurek Kolasa,et al.  Complexity, system integration, and susceptibility to change: Biodiversity connection , 2005 .

[40]  A. Magurran,et al.  Biological diversity in a changing world , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[41]  A. Rossberg,et al.  An explanatory model for food-web structure and evolution , 2004, q-bio/0410030.

[42]  Gregory J. Chaitin,et al.  Information, Randomness and Incompleteness , 1987 .

[43]  L. Floridi Blackwell Guide to the Philosophy of Computing and Information , 2003 .

[44]  Donald M. MacKay,et al.  Information, mechanism and meaning , 1969 .

[45]  Neil Perry The ecological importance of species and the Noah's Ark problem , 2010 .

[46]  Neo D. Martinez,et al.  Food-web structure and network theory: The role of connectance and size , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Ulanowicz An hypothesis on the development of natural communities. , 1980, Journal of theoretical biology.

[48]  Jack W. Szostak,et al.  Functional information: Molecular messages , 2003, Nature.

[49]  James W. McAllister,et al.  Effective Complexity as a Measure of Information Content , 2003, Philosophy of Science.

[50]  K. Farnsworth,et al.  How many dimensions of biodiversity do we need , 2012 .

[51]  R. Cowling,et al.  Nature Conservation Requires More than a Passion for Species , 2004 .

[52]  W. Brock,et al.  Valuing Biodiversity from an Economic Perspective: A Unified Economic, Ecological and Genetic Approach , 2001 .

[53]  R. Ulanowicz,et al.  Nutrient controls on ecosystem dynamics: the Chesapeake mesohaline community , 1999 .

[54]  Guido Caldarelli,et al.  Food Web Structure and the Evolution of Complex Networks , 2003 .

[55]  Klaus Nehring,et al.  A Theory of Diversity , 1999, Electron. Notes Discret. Math..