Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.

We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.

[1]  Mertz,et al.  Observation of squeezed states generated by four-wave mixing in an optical cavity. , 1985, Physical review letters.

[2]  Nicolas J. Cerf,et al.  Quantum entanglement enhances the capacity of bosonic channels with memory , 2005 .

[3]  S. Schiller,et al.  Measurement of the quantum states of squeezed light , 1997, Nature.

[4]  R. Schnabel,et al.  Quantum engineering of squeezed states for quantum communication and metrology , 2007, 0707.2845.

[5]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[6]  Milburn,et al.  All-optical versus electro-optical quantum-limited feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[7]  P. Kuchment,et al.  Introduction to Quantum Graphs , 2012 .

[8]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part III: Quantum measurements realizable with photoemissive detectors , 1980, IEEE Trans. Inf. Theory.

[9]  Hideo Mabuchi,et al.  Coherent-feedback quantum control with a dynamic compensator , 2008, 0803.2007.

[10]  S. Lloyd,et al.  Coherent quantum feedback , 2000 .

[11]  Hideo Mabuchi,et al.  Coherent-feedback control strategy to suppress spontaneous switching in ultralow power optical bistability , 2011, 1101.3461.

[12]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[13]  W. Israel in 300 Years of Gravitation , 1988 .

[14]  Joseph Kerckhoff,et al.  Superconducting microwave multivibrator produced by coherent feedback. , 2012, Physical review letters.

[15]  M. Aspelmeyer,et al.  Squeezing of Light via Reflection from a Silicon Micromechanical Resonator , 2013, 1302.6179.

[16]  J. E. Gough,et al.  Enhancement of field squeezing using coherent feedback , 2009, 0906.1933.

[17]  G. Leuchs,et al.  Low-threshold optical parametric oscillations in a whispering gallery mode resonator , 2010, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[18]  Ling-An Wu,et al.  Squeezed states of light from an optical parametric oscillator , 1987 .

[19]  Dmitri S. Pavlichin,et al.  Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. , 2009, Physical review letters.

[20]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[21]  V. Chan,et al.  Noise in homodyne and heterodyne detection. , 1983, Optics letters.

[22]  Matthew R. James,et al.  Quantum feedback networks and control: A brief survey , 2012, 1201.6020.

[23]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[24]  Naoki Yamamoto,et al.  Experimental Demonstration of Coherent Feedback Control on Optical Field Squeezing , 2011, IEEE Transactions on Automatic Control.

[25]  Gardiner,et al.  Driving a quantum system with the output field from another driven quantum system. , 1993, Physical review letters.

[26]  Karsten Danzmann,et al.  Coherent control of vacuum squeezing in the gravitational-wave detection band. , 2006, Physical review letters.

[27]  Gerd Leuchs,et al.  Squeezed States for Interferometric Gravitational-wave Detectors , 1987 .

[28]  Quantum Key Distribution with Continuous Variables in Optics , 2003 .

[29]  Vitus Händchen,et al.  Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection. , 2010, Physical review letters.

[30]  C. Gardiner,et al.  Squeezing of intracavity and traveling-wave light fields produced in parametric amplification , 1984 .

[31]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[32]  Hidehiro Yonezawa,et al.  Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. , 2007, Optics express.

[33]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[34]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[35]  Xiaolong Su,et al.  Cascaded Entanglement Enhancement , 2012, 1201.1159.

[36]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[37]  Andrey B. Matsko,et al.  Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2001 .

[38]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .