Packing chromatic number of distance graphs

The packing chromatic number ? ? ( G ) of a graph G is the smallest integer k such that vertices of G can be partitioned into disjoint classes X 1 , ? , X k where vertices in X i have pairwise distance greater than i . We study the packing chromatic number of infinite distance graphs G ( Z , D ) , i.e., graphs with the set Z of integers as vertex set and in which two distinct vertices i , j ? Z are adjacent if and only if | i - j | ? D .In this paper we focus on distance graphs with D = { 1 , t } . We improve some results of Togni who initiated the study. It is shown that ? ? ( G ( Z , D ) ) ? 35 for sufficiently large odd t and ? ? ( G ( Z , D ) ) ? 56 for sufficiently large even t . We also give a lower bound 12 for t ? 9 and tighten several gaps for ? ? ( G ( Z , D ) ) with small t .

[1]  Oriol Serra,et al.  Distance graphs with maximum chromatic number , 2008, Discret. Math..

[2]  Premysl Holub,et al.  The packing chromatic number of the square lattice is at least 12 , 2010, ArXiv.

[3]  Olivier Togni On packing colorings of distance graphs , 2014, Discret. Appl. Math..

[4]  Xuding Zhu,et al.  Fractional chromatic number of distance graphs generated by two-interval sets , 2008, Eur. J. Comb..

[5]  Z. Tuza,et al.  Distance Graphs with Nite Chromatic Number Latest Update on 3{8{2001 , 2022 .

[6]  Jirí Fiala,et al.  Complexity of the packing coloring problem for trees , 2008, Discret. Appl. Math..

[7]  Daphne Der-Fen Liu FROM RAINBOW TO THE LONELY RUNNER: A SURVEY ON COLORING PARAMETERS OF DISTANCE GRAPHS , 2008 .

[8]  Premysl Holub,et al.  A Note on Packing Chromatic Number of the Square Lattice , 2010, Electron. J. Comb..

[9]  Douglas F. Rall,et al.  On the packing chromatic number of some lattices , 2010, Discret. Appl. Math..

[10]  Hossein Hajiabolhassan,et al.  Graph Powers and Graph Homomorphisms , 2010, Electron. J. Comb..

[11]  Wayne Goddard,et al.  Braodcast Chromatic Numbers of Graphs , 2008, Ars Comb..

[12]  Sandi Klavzar,et al.  On the packing chromatic number of Cartesian products, hexagonal lattice, and trees , 2007, Discret. Appl. Math..

[13]  Sandi Klavzar,et al.  On the packing chromatic number of Cartesian products, hexagonal lattice, and trees , 2007, Electron. Notes Discret. Math..

[14]  Paul Erdös,et al.  Colouring the real line , 1985, J. Comb. Theory B.

[15]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[16]  Zsolt Tuza,et al.  Distance Graphs with Finite Chromatic Number , 2002, J. Comb. Theory, Ser. B.

[17]  Jirí Fiala,et al.  The packing chromatic number of infinite product graphs , 2009, Eur. J. Comb..

[18]  Christian Sloper AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 29 (2004), Pages 309–321 An eccentric coloring of trees , 2022 .

[19]  Margit Voigt,et al.  Chromatic Number of Prime Distance Graphs , 1994, Discret. Appl. Math..

[20]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[21]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.