The (,1)-problem for hyperplane complements associated to infinite reflection groups

We begin by recalling some well-known facts. The natural action of the symmetric group Sn on jRn can be viewed as a group generated by reflections. The reflections in Sn are the orthogonal reflections across the hyperplanes H jj = {x E jRnlxj = x j }, 1 '.5, i < j '.5, n. The Sn-action extends to Cn (= jRn ®C) and the set of points with nontrivial isotropy group is U H jj ® C. Let M denote the quotient manifold,

[1]  F. A. Garside,et al.  THE BRAID GROUP AND OTHER GROUPS , 1969 .

[2]  Michael W. Davis Groups Generated by reflections and aspherical manifolds not covered by Euclidean space , 1983 .

[3]  Ruth Charney,et al.  Artin groups of finite type are biautomatic , 1992 .

[4]  Martin R. Bridson,et al.  Geodesics and curvature in metric simplicial complexes , 1991 .

[5]  È. Vinberg,et al.  DISCRETE LINEAR GROUPS GENERATED BY REFLECTIONS , 1971 .

[6]  L. Neuwirth,et al.  The Braid Groups. , 1962 .

[7]  Jacques Tits,et al.  Le problème des mots dans les groupes de Coxeter , 1969 .

[8]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[9]  Nicolas Bourbaki,et al.  Eléments de Mathématique , 1964 .

[10]  Ruth Charney,et al.  Singular Metrics of Nonpositive Curvature on Branched Covers of Riemannian Manifolds , 1993 .

[11]  Ruth Charney,et al.  The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold. , 1995 .

[12]  K. Appel,et al.  Artin groups and infinite Coxeter groups , 1983 .

[13]  P. Deligne,et al.  Les immeubles des groupes de tresses généralisés , 1972 .

[14]  Gabor Moussong,et al.  Hyperbolic Coxeter groups , 1988 .

[15]  Ruth Charney,et al.  Geodesic automation and growth functions for Artin groups of finite type , 1995 .

[16]  Folke Lannér On complexes with transitive groups of automorphisms , 1950 .

[17]  H. van der Lek,et al.  The homotopy type of complex hyperplane complements , 1983 .

[18]  N. Dung The fundamental groups of the spaces of regular orbits of the affine weyl groups , 1983 .

[19]  André Haefliger Extension of complexes of groups , 1992 .

[20]  E. Brieskorn Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe , 1971 .

[21]  H. Hendriks Hyperplane complements of large type , 1985 .

[22]  J. Corson Groups Acting on Complexes and Complexes of Groups , 1995 .

[23]  A. Haefliger,et al.  Group theory from a geometrical viewpoint , 1991 .