Numerical Integrators that Preserve Symmetries and Reversing Symmetries

We consider properties of flows, the relationships between them, and whether numerical integrators can be made to preserve these properties. This is done in the context of automorphisms and antiautomorphisms of a certain group generated by maps associated to vector fields. This new framework unifies several known constructions. We also use the concept of "covariance" of a numerical method with respect to a group of coordinate transformations. The main application is to explore the relationship between spatial symmetries, reversing symmetries, and time symmetry of flows and numerical integrators.

[1]  C. Scovel,et al.  On quadratic invariants and symplectic structure , 1994 .

[2]  R. McLachlan Comment on “Poisson schemes for Hamiltonian systems on Poisson manifolds” , 1995 .

[3]  G. Quispel,et al.  SOLVING ODE's NUMERICALLY WHILE PRESERVING ALL FIRST INTEGRALS , 1996 .

[4]  Volume-Preserving Schemes and Numerical Experiments☆ , 1993 .

[5]  M. Berry Lectures on Mechanics , 1993 .

[6]  C. Scovel,et al.  Elementary construction of higher order Lie-Poisson integrators , 1993 .

[7]  Zhong Ge,et al.  Equivariant symplectic difference schemes and generating functions , 1991 .

[8]  C. Scovel,et al.  A survey of open problems in symplectic integration , 1993 .

[9]  G.R.W. Wuispel,et al.  Volume-preserving integrators , 1995 .

[10]  G. R. W. Quispel,et al.  Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems , 1992 .

[11]  C. Scovel Symplectic Numerical Integration of Hamiltonian Systems , 1991 .

[12]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[13]  Jürgen Moser,et al.  Convergent series expansions for quasi-periodic motions , 1967 .

[14]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[15]  John Guckenheimer,et al.  Numerical Analysis of Dynamical Systems , 1999 .

[16]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[17]  J. Lamb,et al.  Symmetries and reversing symmetries in kicked systems , 1994 .

[18]  Badii,et al.  Coexistence of conservative and dissipative behavior in reversible dynamical systems. , 1986, Physical review. A, General physics.

[19]  Jeroen S. W. Lamb,et al.  Reversing symmetries in dynamical systems , 1992 .

[20]  R. McLachlan,et al.  The accuracy of symplectic integrators , 1992 .

[21]  Etienne Forest Application of the Yoshida-Ruth Techniques to Implicit Integration and Multi-Map Explicit Integration , 1991 .

[22]  Feng Kang,et al.  Dynamical systems and geometric construction of algorithms , 1994 .

[23]  A. Thyagaraja,et al.  Representation of volume‐preserving maps induced by solenoidal vector fields , 1985 .

[24]  G. Quispel,et al.  Solving ODEs numerically while preserving a first integral , 1996 .

[25]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[26]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[27]  M. Qin,et al.  Poisson Schemes for Hamiltonian Systems on Poisson Manifolds , 1994 .