Early Analysis of Landsat-8 Thermal Infrared Sensor Imagery of Volcanic Activity

Abstract: The Landsat-8 satellite of the Landsat Data Continuity Mission was launched by the National Aeronautics and Space Administration (NASA) in April 2013. Just weeks after it entered active service, its sensors observed activity at Paluweh Volcano, Indonesia. Given that the image acquired was in the daytime, its shortwave infrared observations were contaminated with reflected solar radiation; however, those of the satellite’s Thermal Infrared Sensor (TIRS) show thermal emission from the volcano’s summit and flanks. These emissions detected in sensor’s band 10 (10.60–11.19 µm) have here been quantified in terms of radiant power, to confirm reports of the actual volcanic processes operating at the time of image acquisition, and to form an initial assessment of the TIRS in its volcanic observation capabilities. Data from band 11 have been neglected as its data have been shown to be unreliable at the time of writing. At the instant of image acquisition, the thermal emission of the volcano was found to be 345 MW. This value is shown to be on the same order of magnitude as similarly timed NASA Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer thermal observations. Given its unique characteristics, the TIRS shows much potential for providing useful, detailed and accurate volcanic observations in the future.

[1]  Giovanni Laneve,et al.  SEVIRI Onboard Meteosat Second Generation, and the Quantitative Monitoring of Effusive Volcanoes in Europe and Africa , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[2]  Martin J. Wooster,et al.  Small‐scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires , 2002 .

[3]  L. Glaze,et al.  Measuring thermal budgets of active volcanoes by satellite remote sensing , 1989, Nature.

[4]  Yoram J. Kaufman,et al.  An Enhanced Contextual Fire Detection Algorithm for MODIS , 2003 .

[5]  Carlos Roberto de Souza Filho,et al.  Monitoring volcanic thermal anomalies from space: Size matters , 2011 .

[6]  S. Baloga,et al.  Constraints on determining the eruption style and composition of terrestrial lavas from space , 2011 .

[7]  A. Harris,et al.  Lava effusion rate definition and measurement: a review , 2007 .

[8]  Clive Oppenheimer,et al.  Thermal distributions at fumarole fields: implications for infrared remote sensing of active volcanoes , 1993 .

[9]  Robert Wright,et al.  Space-based estimate of the volcanic heat flux into the atmosphere during 2001 and 2002 , 2004 .

[10]  Dennis C. Reuter,et al.  Terrestrial Applications of the Thermal Infrared Sensor, TIRS , 2009 .

[11]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[12]  Matthew Blackett,et al.  Review of the utility of infrared remote sensing for detecting and monitoring volcanic activity with the case study of shortwave infrared data for Lascar Volcano from 2001–2005 , 2013 .

[13]  Soo Chin Liew,et al.  Geology, tectonics, and the 2002–2003 eruption of the Semeru volcano, Indonesia: Interpreted from high-spatial resolution satellite imagery , 2012 .

[14]  Zhao-Liang Li,et al.  Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data , 2002 .

[15]  William I. Rose,et al.  Surface temperature and spectral measurements at Santiaguito lava dome, Guatemala , 2004 .

[16]  Kurtis J. Thome,et al.  Calibration of the Thermal Infrared Sensor on the Landsat Data Continuity Mission , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[17]  D. Rothery,et al.  Volcano monitoring using short wavelength infrared data from satellites , 1988 .

[18]  A. Harris,et al.  Temporal trends in lava dome extrusion at Santiaguito 1922–2000 , 2002, Bulletin of Volcanology.

[19]  Michael S. Ramsey,et al.  ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia , 2008 .

[20]  Jason Budinoff,et al.  The Thermal Infrared Sensor on the Landsat Data Continuity Mission , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[21]  David C. Pieri,et al.  ASTER watches the world's volcanoes: a new paradigm for volcanological observations from orbit , 2004 .

[22]  Ludwig Boltzmann,et al.  Ableitung des Stefan'schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie , 1884 .

[23]  L. Keszthelyi,et al.  Calculation of lava effusion rates from Landsat TM data , 1998 .

[24]  Michael G. Gartley,et al.  Simulation of Image Performance Characteristics of the Landsat Data Continuity Mission (LDCM) Thermal Infrared Sensor (TIRS) , 2012, Remote. Sens..

[25]  John R. Schott,et al.  Validation of a web-based atmospheric correction tool for single thermal band instruments , 2005, SPIE Optics + Photonics.

[26]  Missions , 1913, The Biblical World.

[27]  A. Harris Thermal Remote Sensing of Active Volcanoes: A User's Manual , 2013 .

[28]  Martin J. Wooster,et al.  Thermal monitoring of Lascar Volcano, Chile, using infrared data from the along-track scanning radiometer: a 1992–1995 time series , 1997 .

[29]  K. Shadan,et al.  Available online: , 2012 .

[30]  E. Pringsheim,et al.  On the Law of Distribution of Energy in the Normal Spectrum , 2003 .

[31]  F. Polcyn,et al.  Infrared Surveys of Hawaiian Volcanoes , 1964, Science.

[32]  Willy Wien,et al.  Ueber die Energievertheilung im Emissionsspectrum eines schwarzen Körpers , 1896 .

[33]  D. Roy,et al.  The MODIS fire products , 2002 .

[34]  Michael S. Ramsey,et al.  Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR , 2004 .

[35]  M. Planck Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .

[36]  D. Rothery,et al.  Documenting surface magmatic activity at Mount Etna using ATSR remote sensing , 2001 .

[37]  Andrew J. L. Harris,et al.  Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade? , 2013 .

[38]  Andrew J. L. Harris,et al.  The changing morphology of an open lava channel on Mt. Etna , 2006 .

[39]  James R. Irons,et al.  An overview of the Landsat Data Continuity Mission , 2010, Defense + Commercial Sensing.

[40]  John R. Schott,et al.  Landsat-8(formerly LDCM): Mission Update and Thermal Infrared Sensor (TIRS) Initial Post Launch Performance , 2013 .

[41]  P. C. Badgley,et al.  Scientific experiments for manned orbital flight , 1965 .