Acute intermittent porphyria causes hepatic mitochondrial energetic failure in a mouse model.

[1]  J. Denu,et al.  Circadian Clock NAD+ Cycle Drives Mitochondrial Oxidative Metabolism in Mice , 2013, Science.

[2]  R. Desnick,et al.  The porphyrias: advances in diagnosis and treatment. , 2012, Hematology. American Society of Hematology. Education Program.

[3]  A. Hoffbrand,et al.  X-linked Sideroblastic Anemia Due to Carboxyl-terminal ALAS2 Mutations That Cause Loss of Binding to the β-Subunit of Succinyl-CoA Synthetase (SUCLA2)* , 2012, The Journal of Biological Chemistry.

[4]  C. Davio,et al.  ALAS1 gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FOXO1 by vanadate in diabetic mice. , 2012, The Biochemical journal.

[5]  M. Badminton,et al.  Liver Transplantation for Acute Intermittent Porphyria is Complicated by a High Rate of Hepatic Artery Thrombosis , 2012, Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society.

[6]  G. C. Ferreira,et al.  Molecular enzymology of 5-aminolevulinate synthase, the gatekeeper of heme biosynthesis. , 2011, Biochimica et biophysica acta.

[7]  D. Richardson,et al.  Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease. , 2011, Antioxidants & redox signaling.

[8]  H. Bonkovsky,et al.  Lon Peptidase 1 (LONP1)-dependent Breakdown of Mitochondrial 5-Aminolevulinic Acid Synthase Protein by Heme in Human Liver Cells* , 2011, The Journal of Biological Chemistry.

[9]  Y. Hagiya,et al.  The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver , 2011, BMC Research Notes.

[10]  J. Martinou,et al.  Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  H. Puy,et al.  Role of two nutritional hepatic markers (insulin‐like growth factor 1 and transthyretin) in the clinical assessment and follow‐up of acute intermittent porphyria patients , 2009, Journal of internal medicine.

[12]  Jiandie D. Lin,et al.  Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators , 2006, Cell.

[13]  Jiandie D. Lin,et al.  Nutritional Regulation of Hepatic Heme Biosynthesis and Porphyria through PGC-1α , 2005, Cell.

[14]  P. Puigserver,et al.  Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-α , 2005, International Journal of Obesity.

[15]  B. Van Houten,et al.  Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid. , 2004, Archives of biochemistry and biophysics.

[16]  C. Handschin,et al.  Identification of the xenosensors regulating human 5-aminolevulinate synthase , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Badminton,et al.  Liver transplantation as a cure for acute intermittent porphyria , 2004, The Lancet.

[18]  A. Johansson,et al.  Biochemical Characterization of Porphobilinogen Deaminase-Deficient Mice During Phenobarbital Induction of Heme Synthesis and the Effect of Enzyme Replacement , 2003, Molecular medicine.

[19]  A. Munnich,et al.  Molecular insights into Friedreich's ataxia and antioxidant-based therapies. , 2002, Trends in molecular medicine.

[20]  R. Lindberg,et al.  Zinc mesoporphyrin represses induced hepatic 5‐aminolevulinic acid synthase and reduces heme oxygenase activity in a mouse model of acute hepatic porphyria , 2001, Hepatology.

[21]  R. Lindberg,et al.  Limited heme synthesis in porphobilinogen deaminase-deficient mice impairs transcriptional activation of specific cytochrome P450 genes by phenobarbital. , 2000, European journal of biochemistry.

[22]  TimothyJ Peters,et al.  Diagnosis and management of porphyria , 2000, BMJ : British Medical Journal.

[23]  M. Baumgartner,et al.  Motor neuropathy in porphobilinogen deaminase-deficient mice imitates the peripheral neuropathy of human acute porphyria. , 1999, The Journal of clinical investigation.

[24]  A. Aguzzi,et al.  Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria , 1996, Nature Genetics.

[25]  S. Krähenbühl,et al.  Development and evaluation of a spectrophotometric assay for complex III in isolated mitochondria, tissues and fibroblasts from rats and humans. , 1994, Clinica chimica acta; international journal of clinical chemistry.

[26]  A. Vercesi,et al.  Calcium-dependent mitochondrial oxidative damage promoted by 5-aminolevulinic acid. , 1992, Biochimica et biophysica acta.

[27]  A. Herrick,et al.  Elevation of blood lactate and pyruvate levels in acute intermittent porphyria--a reflection of haem deficiency? , 1990, Clinica chimica acta; international journal of clinical chemistry.

[28]  J. Kennedy,et al.  Experimental Porphyric Neuropathy: A Preliminary Report , 1981, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[29]  M. Mayr,et al.  Regulatory properties of succinate dehydrogenase: activation by succinyl CoA, pH, and anions. , 1972, Biochemical and Biophysical Research Communications - BBRC.

[30]  S. Thunell (Far) Outside the box: genomic approach to acute porphyria. , 2006, Physiological research.

[31]  R. Lindberg,et al.  Acute Porphyrias: Pathogenesis of Neurological Manifestations , 1998, Seminars in liver disease.

[32]  E. Bechara,et al.  The prooxidant effect of 5-aminolevulinic acid in the brain tissue of rats: implications in neuropsychiatric manifestations in porphyrias. , 1996, Free radical biology & medicine.

[33]  T. Cox,et al.  Molecular regulation of heme biosynthesis in higher vertebrates. , 1995, Progress in nucleic acid research and molecular biology.

[34]  R. Curi,et al.  5-aminolevulinic acid-induced alterations of oxidative metabolism in sedentary and exercise-trained rats. , 1992, Journal of applied physiology.