Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks

Abstract. This paper reports on consolidated ground-based validation results of the atmospheric NO2 data produced operationally since April 2018 by the TROPOspheric Monitoring Instrument (TROPOMI) on board of the ESA/EU Copernicus Sentinel-5 Precursor (S5P) satellite. Tropospheric, stratospheric, and total NO2 column data from S5P are compared to correlative measurements collected from, respectively, 19 Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS), 26 Network for the Detection of Atmospheric Composition Change (NDACC) Zenith-Scattered-Light DOAS (ZSL-DOAS), and 25 Pandonia Global Network (PGN)/Pandora instruments distributed globally. The validation methodology gives special care to minimizing mismatch errors due to imperfect spatio-temporal co-location of the satellite and correlative data, e.g. by using tailored observation operators to account for differences in smoothing and in sampling of atmospheric structures and variability and photochemical modelling to reduce diurnal cycle effects. Compared to the ground-based measurements, S5P data show, on average, (i) a negative bias for the tropospheric column data, of typically −23 % to −37 % in clean to slightly polluted conditions but reaching values as high as −51 % over highly polluted areas; (ii) a slight negative median difference for the stratospheric column data, of about −0.2 Pmolec cm−2, i.e. approx. −2 % in summer to −15 % in winter; and (iii) a bias ranging from zero to −50 % for the total column data, found to depend on the amplitude of the total NO2 column, with small to slightly positive bias values for columns below 6 Pmolec cm−2 and negative values above. The dispersion between S5P and correlative measurements contains mostly random components, which remain within mission requirements for the stratospheric column data (0.5 Pmolec cm−2) but exceed those for the tropospheric column data (0.7 Pmolec cm−2). While a part of the biases and dispersion may be due to representativeness differences such as different area averaging and measurement times, it is known that errors in the S5P tropospheric columns exist due to shortcomings in the (horizontally coarse) a priori profile representation in the TM5-MP chemical transport model used in the S5P retrieval and, to a lesser extent, to the treatment of cloud effects and aerosols. Although considerable differences (up to 2 Pmolec cm−2 and more) are observed at single ground-pixel level, the near-real-time (NRTI) and offline (OFFL) versions of the S5P NO2 operational data processor provide similar NO2 column values and validation results when globally averaged, with the NRTI values being on average 0.79 % larger than the OFFL values.

[1]  Martina M. Friedrich,et al.  Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels , 2020 .

[2]  S. Compernolle,et al.  Interactive comment on “Validation of the Sentinel-5 Precursor TROPOMI cloud data with Cloudnet, Aura OMI O 2 -O 2 , MODIS and Suomi-NPP VIIRS” , 2020 .

[3]  K. Kreher,et al.  Intercomparison of NO2, O4, O3 and HCHO slant column measurements by MAX-DOAS and zenith-sky UV–visible spectrometers during CINDI-2 , 2020, Atmospheric Measurement Techniques.

[4]  F. Hendrick,et al.  Validation of tropospheric NO2 column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations , 2020, Atmospheric Measurement Techniques.

[5]  K. F. Boersma,et al.  S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI , 2020, Atmospheric Measurement Techniques.

[6]  Martina M. Friedrich,et al.  Validation of TROPOMI tropospheric NO2 columns using dual-scan MAX-DOAS measurements in Uccle, Brussels , 2020 .

[7]  H. Eskes,et al.  Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki , 2020 .

[8]  K. F. Boersma,et al.  A new TROPOMI product for tropospheric NO2 columns over East Asia with explicit aerosol corrections , 2020, Atmospheric Measurement Techniques.

[9]  J. Burrows,et al.  Validation of Aura-OMI QA4ECV NO2 climate data records with ground-based DOAS networks: the role of measurement and comparison uncertainties , 2020, Atmospheric Chemistry and Physics.

[10]  Martina M. Friedrich,et al.  Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies on field data from the CINDI-2 campaign , 2020, Atmospheric Measurement Techniques.

[11]  N. Krotkov,et al.  Assessment of NO2 observations during DISCOVER-AQ and KORUS-AQ field campaigns , 2019, Atmospheric measurement techniques.

[12]  J. Burrows,et al.  Comparison of tropospheric NO2 columns from MAX-DOAS retrievals and regional air quality model simulations , 2017, Atmospheric Chemistry and Physics.

[13]  K. F. Boersma,et al.  Near-real time retrieval of tropospheric NO2 from OMI , 2020 .

[14]  J. Burrows,et al.  comments for Validation of Aura-OMI QA4ECV NO2 Climate Data Records with ground-based DOAS networks: role of measurement and comparison uncertainties , 2020 .

[15]  J. Burrows,et al.  Dual ground-based MAX-DOAS observations in Vienna, Austria: Evaluation of horizontal and temporal NO2, HCHO, and CHOCHO distributions and comparison with independent data sets , 2020 .

[16]  Cheng Liu,et al.  Identifying the wintertime sources of volatile organic compounds (VOCs) from MAX-DOAS measured formaldehyde and glyoxal in Chongqing, southwest China. , 2019, The Science of the total environment.

[17]  F. Boersma,et al.  Assessment of the quality of TROPOMI high-spatial-resolution NO2 data products in the Greater Toronto Area , 2019, Atmospheric Measurement Techniques.

[18]  K. F. Boersma,et al.  Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI , 2019, Scientific Reports.

[19]  C. T. McElroy,et al.  Updated validation of ACE and OSIRIS ozone and NO2 measurements in the Arctic using ground-based instruments at Eureka, Canada , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[20]  Jassim A. Al-Saadi,et al.  Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban areas using high-resolution airborne data. , 2019, Atmospheric measurement techniques.

[21]  Maria Tzortziou,et al.  Underestimation of column NO2 amounts from the OMI satellite compared to diurnally varying ground-based retrievals from multiple PANDORA spectrometer instruments , 2019, Atmospheric Measurement Techniques.

[22]  J. S. Henzing,et al.  Full-azimuthal imaging-DOAS observations of NO2 and O4 during CINDI-2 , 2019, Atmospheric Measurement Techniques.

[23]  Martina M. Friedrich,et al.  Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies using synthetic data , 2019, Atmospheric Measurement Techniques.

[24]  Mengistu Wolde,et al.  High‐Resolution Mapping of Nitrogen Dioxide With TROPOMI: First Results and Validation Over the Canadian Oil Sands , 2019, Geophysical research letters.

[25]  Pinhua Xie,et al.  Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments , 2019, Atmospheric measurement techniques.

[26]  Steffen Beirle,et al.  An improved total and tropospheric NO2 column retrieval for GOME-2 , 2016, Atmospheric Measurement Techniques.

[27]  H. Eskes,et al.  Comparison of TROPOMI/Sentinel 5 Precursor NO2 observations with ground-based measurements in Helsinki , 2019 .

[28]  K. Kreher,et al.  Intercomparison of NO2, O4, O3 and HCHO slant column measurements by MAX-DOAS and zenith-sky UV-Visible spectrometers during the CINDI-2 campaign , 2019 .

[29]  Steffen Beirle,et al.  Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project , 2018, Atmospheric Measurement Techniques.

[30]  Claudia Rivera,et al.  NO2 vertical profiles and column densities from MAX-DOAS measurements in Mexico City , 2018, Atmospheric Measurement Techniques.

[31]  S. Beirle,et al.  The Mainz profile algorithm (MAPA) , 2018, Atmospheric Measurement Techniques.

[32]  A. Damiani,et al.  First MAX‐DOAS Observations of Formaldehyde and Glyoxal in Phimai, Thailand , 2018, Journal of Geophysical Research: Atmospheres.

[33]  Xiong Liu,et al.  Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator over Houston, Texas , 2018, Atmospheric Measurement Techniques.

[34]  J. Burrows,et al.  BOREAS – a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases , 2018, Atmospheric Measurement Techniques.

[35]  M. Naja,et al.  First Simultaneous Observations of Formaldehyde and Glyoxal by MAX-DOAS in the Indo-Gangetic Plain Region , 2018 .

[36]  Tianshu Zhang,et al.  Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China , 2017 .

[37]  A. Bais,et al.  MAX-DOAS NO 2 observations over Guangzhou, China; ground-based and satellite comparisons , 2017 .

[38]  B. Funke,et al.  Hemispheric asymmetry in stratospheric NO 2 trends , 2017 .

[39]  R. Burger,et al.  OMI Satellite and Ground‐Based Pandora Observations and Their Application to Surface NO2 Estimations at Terrestrial and Marine Sites , 2017 .

[40]  Martine De Mazière,et al.  The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives , 2017 .

[41]  L. G. Tilstra,et al.  The Ozone Monitoring Instrument: overview of 14 years in space , 2017 .

[42]  J. Staehelin,et al.  Comparison of the GOME ozone and NO2 total amounts at mid-latitude with ground-based zenith-sky measurements , 2017 .

[43]  I. D. Smedt,et al.  Validation of OMI, GOME-2A and GOME-2B tropospheric NO 2 , SO 2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the effects of priori profiles and aerosols on the satellite products , 2017 .

[44]  A. Bais,et al.  MAX-DOAS NO2 observations over Guangzhou, China; ground-based and satellite comparisons , 2017 .

[45]  J. Burrows,et al.  Investigating differences in DOAS retrieval codes using MAD-CAT campaign data , 2016 .

[46]  T. Blumenstock,et al.  Intercomparison of stratospheric nitrogen dioxide columns retrieved from ground-based DOAS and FTIR and satellite DOAS instruments over the subtropical Izana station , 2016 .

[47]  I. D. Smedt,et al.  Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China , 2016 .

[48]  A. Bais,et al.  Comparisons of ground-based tropospheric NO 2 MAX-DOAS measurements to satellite observations with the aid of an air quality model over the Thessaloniki area, Greece , 2016 .

[49]  J. Burrows,et al.  Slant column MAX-DOAS measurements of nitrogen dioxide, formaldehyde, glyoxal and oxygen dimer in the urban environment of Athens , 2016 .

[50]  Steffen Beirle,et al.  MAX-DOAS measurements and satellite validation of tropospheric NO2 and SO2 vertical column densities at a rural site of North China , 2016 .

[51]  Claudia Rivera,et al.  The MAX-DOAS network in Mexico City to measure atmospheric pollutants , 2016 .

[52]  Christophe Lerot,et al.  Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons , 2015 .

[53]  A. Uchiyama,et al.  Evaluation of MAX-DOAS aerosol retrievals by coincident observations using CRDS, lidar, and sky radiometer inTsukuba, Japan , 2015 .

[54]  R. Volkamer,et al.  The CU 2-D-MAX-DOAS instrument – Part 1: Retrieval of 3-D distributions of NO 2 and azimuth-dependent OVOC ratios , 2015 .

[55]  F. Hendrick,et al.  A simple and versatile cloud-screening method for MAX-DOAS retrievals , 2014 .

[56]  Jihyo Chong,et al.  Long-term MAX-DOAS network observations of NO 2 in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations , 2014 .

[57]  J. Herman,et al.  Atmospheric NO2 dynamics and impact on ocean color retrievals in urban nearshore regions , 2014 .

[58]  Yang Wang,et al.  A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy , 2013 .

[59]  R. Martin,et al.  Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide , 2013 .

[60]  J. Lambert,et al.  Combining and Merging Water Vapour Observations: A Multi-dimensional Perspective on Smoothing and Sampling Issues , 2013 .

[61]  Christian Hermans,et al.  Four years of ground-based MAX-DOAS observations of HONO and NO 2 in the Beijing area , 2012 .

[62]  K. F. Boersma,et al.  Quantitative bias estimates for tropospheric NO 2 columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common standard for East Asia , 2012 .

[63]  Steffen Beirle,et al.  Tropospheric No 2 Vertical Column Densities over Beijing Printer-friendly Version Interactive Discussion Atmospheric Chemistry and Physics Discussions Tropospheric No 2 Vertical Column Densities over Beijing: Results of the First Three-years of Ground-based Max-doas Measurements (2008–2011) and Sate , 2022 .

[64]  Steffen Beirle,et al.  Inversion of tropospheric profiles of aerosol extinction and HCHO and NO 2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets , 2011 .

[65]  MAX-DOAS tropospheric nitrogen dioxide column measurements compared with the Lotos-Euros air quality model , 2011 .

[66]  Henk Eskes,et al.  An improved tropospheric NO 2 column retrieval algorithm for the Ozone Monitoring Instrument , 2011 .

[67]  Pieter Valks,et al.  Operational total and tropospheric NO 2 column retrieval for GOME-2 , 2011 .

[68]  F. Hendrick,et al.  NDACC/SAOZ UV-visible total ozone measurements: improved retrieval and comparison with correlative ground-based and satellite observations , 2011 .

[69]  Dominik Brunner,et al.  Eight-component retrievals from ground-based MAX-DOAS observations , 2011 .

[70]  Henk Eskes,et al.  Evaluation of stratospheric NO2 retrieved from the Ozone Monitoring Instrument : intercomparison, diurnal cycle and trending , 2011 .

[71]  Steffen Beirle,et al.  The Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI): design, execution, and early results , 2011 .

[72]  Piet Stammes,et al.  Retrieval of tropospheric NO 2 using the MAX-DOAS method combined with relative intensity measurements for aerosol correction , 2010 .

[73]  F. Hendrick,et al.  Multiple wavelength retrieval of tropospheric aerosol optical properties from MAXDOAS measurements in Beijing , 2010 .

[74]  A. Gruzdev,et al.  Validation of Ozone Monitoring Instrument NO2 measurements using ground based NO2 measurements at Zvenigorod, Russia , 2010 .

[75]  John P. Burrows,et al.  On the improvement of NO 2 satellite retrievals – aerosol impact on the airmass factors , 2009 .

[76]  Maria Tzortziou,et al.  NO2 column amounts from ground‐based Pandora and MFDOAS spectrometers using the direct‐sun DOAS technique: Intercomparisons and application to OMI validation , 2009 .

[77]  H. Tanimoto,et al.  Validation of OMI tropospheric NO 2 column data using MAX-DOAS measurements deep inside the North China Plain in June 2006: Mount Tai Experiment 2006 , 2008 .

[78]  Steffen Beirle,et al.  Tropospheric NO 2 column densities deduced from zenith-sky DOAS measurements in Shanghai, China, and their application to satellite validation , 2008 .

[79]  R. L. Curier,et al.  The 2005 and 2006 DANDELIONS NO2 and aerosol intercomparison campaigns , 2008 .

[80]  J. Veefkind,et al.  Validation of Ozone Monitoring Instrument nitrogen dioxide columns , 2008 .

[81]  V. K. Semenov,et al.  Ground‐based validation of EOS‐Aura OMI NO2 vertical column data in the midlatitude mountain ranges of Tien Shan (Kyrgyzstan) and Alps (France) , 2008 .

[82]  M. Palin POLE TO POLE , 2008, Science.

[83]  H. Tanimoto,et al.  Validation of OMI tropospheric NO 2 column data using MAX-DOAS measurements deep inside the North China Plain in June 2006 , 2008 .

[84]  K. F. Boersma,et al.  Near-real time retrieval of tropospheric NO 2 from OMI , 2006 .

[85]  T. Wagner,et al.  Multi axis differential optical absorption spectroscopy (MAX-DOAS) of gas and aerosol distributions. , 2005, Faraday discussions.

[86]  Klaus Pfeilsticker,et al.  An intercomparison campaign of ground-based UV-visible measurements of NO2, BrO, and OClO slant columns: Methods of analysis and results for NO2 , 2005 .

[87]  Hartmut Boesch,et al.  Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: validation of the technique through correlative comparisons , 2004 .

[88]  P. Zieger,et al.  Multi axis differential optical absorption spectroscopy (MAX-DOAS) , 2003 .

[89]  Daniele Bortoli,et al.  SCIAMACHY Validation of NO2 Total Column by Means of Ground-based DOAS Measurements at Mt. Cimone (44N, 11E) and Stara Zagora (42N, 25E) Stations (AOID1103) , 2003 .

[90]  Ulrich Platt,et al.  Observations of BrO and its vertical distribution during surface ozone depletion at Alert , 2002 .

[91]  D. Fonteyn,et al.  Four‐dimensional variational chemical assimilation of CRISTA stratospheric measurements , 2001 .

[92]  K. Pfeilsticker,et al.  Intercomparison of the influence of tropospheric clouds on UV‐visible absorptions Detected during the NDSC Intercomparison Campaign at OHP in June 1996 , 1999 .

[93]  A. Elokhov,et al.  Slant Column Measurements of O3 and NO2 During the NDSC Intercomparison of Zenith-Sky UV-Visible Spectrometers in June 1996 , 1999 .

[94]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[95]  Michael Eisinger,et al.  The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results , 1999 .

[96]  Ann Carine Vandaele,et al.  Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K , 1998 .

[97]  Jerald W. Harder,et al.  Temperature dependent NO2 cross sections at high spectral resolution , 1997 .

[98]  J. Lambert,et al.  Pole-to-pole validation of the ERS-2 GOME level 2 products with the SAOZ ground-based network , 1997 .

[99]  M. V. Roozendael,et al.  Fourier transform measurement of NO2 absorption cross-section in the visible range at room temperature , 1996 .

[100]  Florence Goutail,et al.  O3 and NO2 ground‐based measurements by visible spectrometry during Arctic winter and spring 1988 , 1988 .

[101]  Stanley C. Solomon,et al.  On the interpretation of zenith sky absorption measurements , 1987 .

[102]  Ulrich Platt,et al.  Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy , 1983 .

[103]  R. S. Hyde,et al.  Stratospheric NO2: 1. Observational method and behavior at mid‐latitude , 1979 .