Phonon anharmonic investigation on the different structural phase transition processes of cubic KNbO3 and KTaO3

[1]  Jianhua Xu,et al.  Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP2 (X = Si, Ge, and Sn). , 2019, Inorganic chemistry.

[2]  David J. Singh,et al.  Thermal conductivity of perovskite KTaO3 and PbTiO3 from first principles , 2018, Physical Review Materials.

[3]  H. Nagata,et al.  Local structure and phase transitions of KNbO3 , 2018, Japanese Journal of Applied Physics.

[4]  Isao Tanaka,et al.  Lattice thermal conductivities of two SiO2 polymorphs by first-principles calculations and the phonon Boltzmann transport equation , 2018, Physical Review B.

[5]  Shao-yi Wu,et al.  First-principles investigation on the mechanism of photocatalytic properties for cubic and orthorhombic KNbO 3 , 2018 .

[6]  Li-Na Wu,et al.  First-principles investigation on the structural, elastic, electronic and optical properties and possible mechanism of the photocatalytic properties for orthorhombic and tetragonal KNbO3 , 2018 .

[7]  X. Lv,et al.  Intrinsic sources of high thermal conductivity of CdSiP2 determined by first-principle anharmonic calculations. , 2018, Physical chemistry chemical physics : PCCP.

[8]  P. Vlăzan,et al.  Phase transition behaviour and physicochemical properties of KNbO3 ceramics , 2017 .

[9]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[10]  Isao Tanaka,et al.  Distributions of phonon lifetimes in Brillouin zones , 2015, 1501.00691.

[11]  Laurent Chaput,et al.  Direct solution to the linearized phonon Boltzmann equation. , 2013, Physical review letters.

[12]  Dragia Ivanov,et al.  Short-range action and long-range action of the electrostatic forces within atomic nuclei , 2013 .

[13]  T. L. Reinecke,et al.  Ab initio thermal transport in compound semiconductors , 2013 .

[14]  Zhongxiang Zhou,et al.  First-principles calculations of electronic and optical properties of lead-free KTa1−xNbxO3 under high pressure , 2013 .

[15]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[16]  Shun-Li Shang,et al.  First-principles lattice dynamics and heat capacity of BiFeO3 , 2011 .

[17]  K. Fujii,et al.  Self-Consistent Anharmonic Theory and Its Application to the Soft Mode of BaTiO3 , 2011 .

[18]  Natalio Mingo,et al.  Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules , 2009 .

[19]  M. Tachibana,et al.  Thermal conductivity of perovskite ferroelectrics , 2008 .

[20]  Harold T. Stokes,et al.  Method to extract anharmonic force constants from first principles calculations , 2008 .

[21]  R. Boughton,et al.  Thermal properties of cubic KTa1−xNbxO3 crystals , 2008 .

[22]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[23]  Gernot Deinzer,et al.  Ab initio calculation of the linewidth of various phonon modes in germanium and silicon , 2003 .

[24]  Skowron,et al.  Long-range Coulomb forces and localized bonds. , 1999, Acta crystallographica. Section B, Structural science.

[25]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[26]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[27]  A. Savin,et al.  Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.

[28]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[29]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[30]  A. Baldereschi,et al.  Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3. , 1993, Physical review letters.

[31]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[32]  Wojciech Kuczynski,et al.  The soft-mode ferroelectric effect , 1988 .

[33]  P. Coleridge,et al.  Extensions of the tetrahedron method for evaluating spectral properties of solids , 1979 .

[34]  G. Zaccai,et al.  Soft modes and the structure of ferroelectric tetragonal KTN. II. The lattice dynamics of the cubic phase , 1974 .

[35]  G. Zaccai,et al.  Soft modes and the structure of ferroelectric tetragonal potassium tantalate-niobate (I) , 1972 .

[36]  A. Maradudin,et al.  SCATTERING OF NEUTRONS BY AN ANHARMONIC CRYSTAL , 1962 .

[37]  S. Triebwasser,et al.  Study of Ferroelectric Transitions of Solid-Solution Single Crystals of KNbO3-KTaO3 , 1959 .

[38]  Jean-Marc Triscone,et al.  Physics of ferroelectrics : a modern perspective , 2007 .

[39]  M. Chou,et al.  First-Principles Calculation of Force Constants and Full Phonon Dispersions , 1992 .