Extended Linear Models with Gaussian Prior on the Parameters and Adaptive Expansion Vectors
暂无分享,去创建一个
Lluís A. Belanche Muñoz | Enrique Romero | Ignacio Barrio | E. Romero | Ignacio Barrio | L. B. Muñoz
[1] Tomaso A. Poggio,et al. Extensions of a Theory of Networks for Approximation and Learning , 1990, NIPS.
[2] George Eastman House,et al. Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .
[3] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[4] M. Seeger. Expectation Propagation for Exponential Families , 2005 .
[5] Yuan Qi,et al. Predictive automatic relevance determination by expectation propagation , 2004, ICML.
[6] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[7] Joaquin Quiñonero Candela,et al. Incremental Gaussian Processes , 2002, NIPS.
[8] Tom Minka,et al. Expectation Propagation for approximate Bayesian inference , 2001, UAI.
[9] Gm Gero Walter,et al. Bayesian linear regression , 2009 .
[10] Bernhard Schölkopf,et al. Building Sparse Large Margin Classifiers , 2005, ICML.
[11] David J. C. MacKay,et al. Bayesian Interpolation , 1992, Neural Computation.
[12] Thomas G. Dietterich,et al. Improving the Performance of Radial Basis Function Networks by Learning Center Locations , 1991, NIPS.
[13] Pat Langley,et al. Editorial: On Machine Learning , 1986, Machine Learning.
[14] Michael E. Tipping,et al. Fast Marginal Likelihood Maximisation for Sparse Bayesian Models , 2003 .
[15] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[16] Stefan Schaal,et al. The Bayesian backfitting relevance vector machine , 2004, ICML.
[17] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.