Variational Inference for Gaussian Process Models with Linear Complexity
暂无分享,去创建一个
[1] Alexandre Lacoste,et al. PAC-Bayesian Theory Meets Bayesian Inference , 2016, NIPS.
[2] Nathaniel Eldredge,et al. Analysis and Probability on Infinite-Dimensional Spaces , 2016, 1607.03591.
[3] Bernhard Schölkopf,et al. Sparse multiscale gaussian process regression , 2008, ICML '08.
[4] Han-Pang Huang,et al. Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems , 2016, IEEE Transactions on Cybernetics.
[5] James Hensman,et al. On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes , 2015, AISTATS.
[6] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[7] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[8] Arno Solin,et al. Variational Fourier Features for Gaussian Processes , 2016, J. Mach. Learn. Res..
[9] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[10] Aníbal R. Figueiras-Vidal,et al. Inter-domain Gaussian Processes for Sparse Inference using Inducing Features , 2009, NIPS.
[11] Carl E. Rasmussen,et al. Understanding Probabilistic Sparse Gaussian Process Approximations , 2016, NIPS.
[12] Byron Boots,et al. Incremental Variational Sparse Gaussian Process Regression , 2016, NIPS.
[13] Neil D. Lawrence,et al. Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.
[14] Andrew Gordon Wilson,et al. Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) , 2015, ICML.
[15] Alexander J. Smola,et al. Online learning with kernels , 2001, IEEE Transactions on Signal Processing.
[16] L. Gross. Abstract Wiener spaces , 1967 .
[17] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[18] James Hensman,et al. Scalable Variational Gaussian Process Classification , 2014, AISTATS.
[19] Le Song,et al. Scalable Kernel Methods via Doubly Stochastic Gradients , 2014, NIPS.
[20] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[21] Yuval Tassa,et al. MuJoCo: A physics engine for model-based control , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[22] Manfred Opper,et al. Sparse Representation for Gaussian Process Models , 2000, NIPS.
[23] Sergey Levine,et al. Trust Region Policy Optimization , 2015, ICML.
[24] Stefan Schaal,et al. Incremental Local Gaussian Regression , 2014, NIPS.
[25] Carl E. Rasmussen,et al. Sparse Spectrum Gaussian Process Regression , 2010, J. Mach. Learn. Res..
[26] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[27] Roni Khardon,et al. Sparse Variational Inference for Generalized GP Models , 2015, ICML.