On Frobenius and separable Galois cowreaths
暂无分享,去创建一个
[1] B. Torrecillas,et al. Frobenius cowreaths and Morita contexts , 2020 .
[2] S. Caenepeel,et al. Frobenius and Separable Functors for the Category of Entwined Modules over Cowreaths, I: General Theory , 2016, Algebras and Representation Theory.
[3] S. Caenepeel,et al. Frobenius and separable functors for the category of entwined modules over cowreaths, II: Applications , 2018, Journal of Algebra.
[4] Dominic R. Verity,et al. ∞-Categories for the Working Mathematician , 2018 .
[5] R. Street. Wreaths, mixed wreaths and twisted coactions , 2016, 1610.07281.
[6] Katharina Weiss,et al. Lectures On Modules And Rings , 2016 .
[7] B. Torrecillas,et al. On Frobenius and separable algebra extensions in monoidal categories. Applications to wreaths , 2013, 1303.0802.
[8] S. Caenepeel,et al. Monoidal Ring and Coring Structures Obtained from Wreaths and Cowreaths , 2013, 1302.5626.
[9] K. Yamagata,et al. Frobenius Algebras I: Basic Representation Theory , 2011 .
[10] S. Montgomery. Hopf Galois theory: A survey , 2009 .
[11] J. Cuadra. A Hopf algebra having a separable Galois extension is finite dimensional , 2006, math/0612613.
[12] P. Schauenburg. Actions of monoidal categories and generalized Hopf smash products , 2003 .
[13] S. Lack,et al. The formal theory of monads II , 2002 .
[14] 公庄 庸三. Basic Algebra = 代数学入門 , 2002 .
[15] S. Raianu,et al. Hopf algebras : an introduction , 2001 .
[16] F. Panaite,et al. Clifford-type algebras as cleft extensions for some pointed hopf algebras , 2000 .
[17] S. Majid. Foundations of Quantum Group Theory , 1995 .
[18] Susan Montgomery,et al. Hopf algebras and their actions on rings , 1993 .
[19] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[20] Davida Fischman,et al. Semisimple extensions and elements of trace 1 , 1992 .
[21] B. Pareigis. Forms of Hopf algebras and Galois theory , 1990 .
[22] L. Childs. On the hopf galois theory for separable field extensions , 1989 .
[23] R. Larson,et al. Finite dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple , 1988 .
[24] B. Pareigis. Non-additive ring and module theory V : projective and coflat objects , 1980 .
[25] M. Sweedler,et al. Hopf Algebras and Galois Theory , 1969 .