On Frobenius and separable Galois cowreaths

[1]  B. Torrecillas,et al.  Frobenius cowreaths and Morita contexts , 2020 .

[2]  S. Caenepeel,et al.  Frobenius and Separable Functors for the Category of Entwined Modules over Cowreaths, I: General Theory , 2016, Algebras and Representation Theory.

[3]  S. Caenepeel,et al.  Frobenius and separable functors for the category of entwined modules over cowreaths, II: Applications , 2018, Journal of Algebra.

[4]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[5]  R. Street Wreaths, mixed wreaths and twisted coactions , 2016, 1610.07281.

[6]  Katharina Weiss,et al.  Lectures On Modules And Rings , 2016 .

[7]  B. Torrecillas,et al.  On Frobenius and separable algebra extensions in monoidal categories. Applications to wreaths , 2013, 1303.0802.

[8]  S. Caenepeel,et al.  Monoidal Ring and Coring Structures Obtained from Wreaths and Cowreaths , 2013, 1302.5626.

[9]  K. Yamagata,et al.  Frobenius Algebras I: Basic Representation Theory , 2011 .

[10]  S. Montgomery Hopf Galois theory: A survey , 2009 .

[11]  J. Cuadra A Hopf algebra having a separable Galois extension is finite dimensional , 2006, math/0612613.

[12]  P. Schauenburg Actions of monoidal categories and generalized Hopf smash products , 2003 .

[13]  S. Lack,et al.  The formal theory of monads II , 2002 .

[14]  公庄 庸三 Basic Algebra = 代数学入門 , 2002 .

[15]  S. Raianu,et al.  Hopf algebras : an introduction , 2001 .

[16]  F. Panaite,et al.  Clifford-type algebras as cleft extensions for some pointed hopf algebras , 2000 .

[17]  S. Majid Foundations of Quantum Group Theory , 1995 .

[18]  Susan Montgomery,et al.  Hopf algebras and their actions on rings , 1993 .

[19]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[20]  Davida Fischman,et al.  Semisimple extensions and elements of trace 1 , 1992 .

[21]  B. Pareigis Forms of Hopf algebras and Galois theory , 1990 .

[22]  L. Childs On the hopf galois theory for separable field extensions , 1989 .

[23]  R. Larson,et al.  Finite dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple , 1988 .

[24]  B. Pareigis Non-additive ring and module theory V : projective and coflat objects , 1980 .

[25]  M. Sweedler,et al.  Hopf Algebras and Galois Theory , 1969 .