Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives

Tropical and plantation crops include important crops for food security and alternative energy resources. Even so, there are few studies on the impact of climate change on diseases of these crops. Findings from previous studies concerning some climate-change effects on diseases of coffee, sugarcane, eucalyptus, cassava, citrus, banana, pineapple, cashew, coconut and papaya have been summarized to provide a context. By reviewing available methods to evaluate the impact of climate change on diseases of tropical and plantation crops, we present trends for some diseases and their management strategies, identify critical gaps in knowledge, and suggest experimental and analytical approaches to advance knowledge. As the projected climate conditions will probably vary greatly in the future from continent to continent and from developed to developing countries, studies must be conducted under tropical regions considering their specific environmental conditions. Multifactor studies under realistic field situations, such as free air CO2 enrichment with increasing CO2 and O3 concentrations incorporating spectral reflectance measures in situ for realistic assessment of plant growth, are a way forward. Effects of a changing climate on chemical and biological controls are discussed in the context of changing global outlook on environmental demands for the future.

[1]  R. Colwell Determining the prevalence of certain cereal crop diseases by means of aerial photography , 1956 .

[2]  Armando Bergamin Filho,et al.  Manual de fitopatologia , 1968 .

[3]  B. S. Ausmus,et al.  Reflectance studies of healthy, maize dwarf mosaic virus-infected, and Helminthosporium maydis-infected corn leaves , 1971 .

[4]  R. Jackson Remote sensing of biotic and abiotic plant stress , 1986 .

[5]  J. Campbell Introduction to remote sensing , 1987 .

[6]  Albertus Eskes,et al.  Advances in Coffee Rust Research , 1989 .

[7]  B. Lorenzen,et al.  Changes in leaf spectral properties induced in barley by cereal powdery mildew , 1989 .

[8]  T. Malthus,et al.  High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by Botrytis fabae , 1993 .

[9]  Gregory A. Carter,et al.  Responses of leaf spectral reflectance to plant stress. , 1993 .

[10]  R. Whitbread,et al.  Effect of elevated concentrations of CO2on infection of barley byErysiphe graminis , 1996 .

[11]  S. Chakraborty,et al.  Climate change and plant disease management. , 1999, Annual review of phytopathology.

[12]  R. Caldas,et al.  Effect of temperature and rainfall on the incidence of Fusarium subglutinans on pineapple fruits. , 2000 .

[13]  A. von Tiedemann,et al.  Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat. , 2000, Environmental pollution.

[14]  R. Ceulemans,et al.  Effects of ozone exposure in open-top chambers on poplar (Populus nigra) and beech (Fagus sylvatica): a comparison. , 2000, Environmental pollution.

[15]  S. Chakraborty,et al.  Climate change: potential impact on plant diseases. , 2000, Environmental pollution.

[16]  T. Booth,et al.  Climatic mapping to identify high-risk areas for Cylindrocladium quinqueseptatum leaf blight on eucalypts in mainland South East Asia and around the world. , 2000, Environmental pollution.

[17]  D. Warwick Stromata colonization of Sphaerodothis acrocomiae causal agent of the coconut large verrucosis by Acremonium persicinum , 2001 .

[18]  F. Zee,et al.  Differentiation, Distribution, and Elimination of Two Different Pineapple mealybug wilt-associated viruses Found in Pineapple. , 2001, Plant disease.

[19]  Joanna Isobel House,et al.  Climate change 2001 : synthesis report , 2001 .

[20]  Bruce A. McCarl,et al.  An Investigation of the Relationship between Pesticide Usage and Climate Change , 2001 .

[21]  R. E. Dickson,et al.  Altered performance of forest pests under atmospheres enriched by CO2 and O3 , 2002, Nature.

[22]  Valérie Verdier Bacteriosis vascular (o añublo bacteriano) de la yuca causada por Xanthomonas axonopodis pv. manihotis , 2002 .

[23]  R. E. Dickson,et al.  Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae) , 2002 .

[24]  J. E. Cardoso,et al.  Diseases of cashew nut plants (Anacardium occidentale L.) in Brazil , 2002 .

[25]  Nicola Nosengo Fertilized to death , 2003, Nature.

[26]  H. Muhammed,et al.  Feature vector based analysis of hyperspectral crop reflectance data for discrimination and quantification of fungal disease severity in wheat , 2003 .

[27]  P. Reich,et al.  Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease , 2003 .

[28]  R. Ploetz Diseases of Tropical Fruit Crops , 2003 .

[29]  R. Ploetz,et al.  Diseases of banana and plantain. , 2003 .

[30]  D. A. Stacey,et al.  Climate and biological control in organic crops , 2003 .

[31]  S. Chakraborty,et al.  How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate? , 2003, The New phytologist.

[32]  Eduardo Delgado Assad,et al.  Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil , 2004 .

[33]  S. Chakraborty,et al.  Plant disease and climate change , 2004 .

[34]  S. Long,et al.  Review Tansley Review , 2022 .

[35]  A. Moya,et al.  Analysis of and function predictions for previously conserved hypothetical or putative proteins in Blochmannia floridanus , 2006, BMC Microbiology.

[36]  M. Gryndler,et al.  Saprobic microfungi under Lolium perenne and Trifolium repens at different fertilization intensities and elevated atmospheric CO2 concentration , 2005 .

[37]  P. R. Scott,et al.  Plant disease: a threat to global food security. , 2005, Annual review of phytopathology.

[38]  G. Pritchard Crops and environmental change , 2005 .

[39]  M. Melzer,et al.  Diversity and Mealybug Transmissibility of Ampeloviruses in Pineapple. , 2005, Plant disease.

[40]  S. Long,et al.  What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. , 2004, The New phytologist.

[41]  T. O. Adejumo Crop protection strategies for major diseases of cocoa, coffee and cashew in Nigeria , 2005 .

[42]  K. R. Reddy Crops and Environmental Change , 2005 .

[43]  B. Schmid,et al.  Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity , 2006, BMC Microbiology.

[44]  A. Fangmeier,et al.  Atmospheric carbon dioxide enrichment effects on ecosystems — experiments and the real world , 2006 .

[45]  K. Garrett,et al.  Climate change effects on plant disease: genomes to ecosystems. , 2006, Annual review of phytopathology.

[46]  A. Palojärvi,et al.  A 3-year exposure to CO2 and O3 induced minor changes in soil N cycling in a meadow ecosystem , 2006, Plant and Soil.

[47]  L. Ziska,et al.  Elevated Atmospheric Carbon Dioxide and Weed Populations in Glyphosate Treated Soybean , 2006 .

[48]  M. P. Aidar,et al.  Effects of elevated CO2 on the phytoalexin production of two soybean cultivars differing in the resistance to stem canker disease , 2006 .

[49]  Johanna Link,et al.  Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements , 2006, Central European Journal of Biology.

[50]  C. Conde,et al.  Potential Impacts of Climate Change on Agriculture: A Case of Study of Coffee Production in Veracruz, Mexico , 2006 .

[51]  Yong‐Ju Huang,et al.  Temperature and leaf wetness duration affect phenotypic expression of Rlm6-mediated resistance to Leptosphaeria maculans in Brassica napus. , 2006, The New phytologist.

[52]  J. Melillo,et al.  Tropical agriculture and global warming: impacts and mitigation options , 2007 .

[53]  P. Ambus,et al.  Experimental design of multifactor climate change experiments with elevated CO2, warming and drought: the CLIMAITE project , 2007 .

[54]  H. Insam,et al.  Structural and functional diversity of soil microbes is affected by elevated [CO2] and N addition in a poplar plantation , 2007 .

[55]  K. Omasa,et al.  3D lidar imaging for detecting and understanding plant responses and canopy structure. , 2006, Journal of experimental botany.

[56]  R. Ghini,et al.  Análise de risco das mudanças climáticas globais sobre a sigatoka-negra da bananeira no Brasil , 2007 .

[57]  H. Rennenberg,et al.  Influence of elevated CO2 and ozone concentrations on late blight resistance and growth of potato plants , 2007 .

[58]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[59]  G. A. Blackburn,et al.  Hyperspectral remote sensing of plant pigments. , 2006, Journal of experimental botany.

[60]  J. Riikonen,et al.  Stomatal characteristics and infection biology of Pyrenopeziza betulicola in Betula pendula trees grown under elevated CO2 and O3. , 2008, Environmental pollution.

[61]  R. Ghini,et al.  Mudanças climáticas: impactos sobre doenças de plantas no Brasil. , 2008 .

[62]  Sukumar Chakraborty,et al.  Impacts of global change on diseases of agricultural crops and forest trees , 2008 .

[63]  Mike J Jeger,et al.  Plant disease and global change--the importance of long-term data sets. , 2007, The New phytologist.

[64]  P. Paul,et al.  Worldwide geographical distribution of Black Sigatoka for banana: predictions based on climate change models , 2008 .

[65]  R. Ghini,et al.  Cenários climáticos futuros para o Brasil. , 2008 .

[66]  R. Ghini,et al.  Climate change and plant diseases , 2008 .

[67]  Jeffrey W. White,et al.  Next generation of elevated [CO2] experiments with crops: a critical investment for feeding the future world. , 2008, Plant, cell & environment.

[68]  P. Yamamoto,et al.  Impacto potencial das mudanças climáticas sobre as principais doenças de citros no estado de São Paulo. , 2008 .

[69]  J. Marengo,et al.  Risk analysis of climate change on coffee nematodes and leaf miner in Brazil , 2008 .

[70]  Paul R. Martin,et al.  Impacts of climate warming on terrestrial ectotherms across latitude , 2008, Proceedings of the National Academy of Sciences.

[71]  R. Ghini,et al.  Climate change and plant disease. , 2008 .

[72]  R. Ghini,et al.  Proposta metodológica para discussão dos impactos das mudanças climáticas globais sobre doenças de plantas. , 2008 .

[73]  W. Bettiol,et al.  Impactos das mudanças climáticas sobre o controle biológico de doenças de plantas. , 2009 .

[74]  R. Jain,et al.  Ambient temperature perception in papaya for papaya ringspot virus interaction , 2009, Virus Genes.

[75]  R. Ghini,et al.  Efeito do aumento da concentração de CO2 atmosférico sobre o oídio e o crescimento de plantas de soja , 2009 .

[76]  L. Mendes UNIVERSIDADE ESTADUAL PAULISTA "JULIO DE MESQUITA FILHO" FACULDADE DE CIÊNCIAS AGRONÔMICAS CAMPUS DE BOTUCATU IMPACTO DO AUMENTO DA CONCENTRAÇÃO DE CO2 ATMOSFÉRICO SOBRE O PERÍODO LATENTE E O CONTROLE BIOLÓGICO DA FERRUGEM DO CAFEEIRO , 2009 .

[77]  T. Cavagnaro,et al.  Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO. , 2009, Plant biology.

[78]  W. Landman Climate change 2007: the physical science basis , 2010 .

[79]  E. DeLucia,et al.  Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE , 2010 .

[80]  R. Sutherst,et al.  Potential impact of climate change on plant diseases of economic significance to Australia , 1998, Australasian Plant Pathology.