P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries

Most P2-type layered oxides exhibit Na+/vacancy-ordered superstructures because of strong Na+–Na+ interaction in the alkali metal layer and charge ordering in the transition metal layer. These superstructures evidenced by voltage plateaus in the electrochemical curves limit the Na+ ion transport kinetics and cycle performance in rechargeable batteries. Here we show that such Na+/vacancy ordering can be avoided by choosing the transition metal ions with similar ionic radii and different redox potentials, for example, Cr3+ and Ti4+. The designed P2-Na0.6[Cr0.6Ti0.4]O2 is completely Na+/vacancy-disordered at any sodium content and displays excellent rate capability and long cycle life. A symmetric sodium-ion battery using the same P2-Na0.6[Cr0.6Ti0.4]O2 electrode delivers 75% of the initial capacity at 12C rate. Our contribution demonstrates that the approach of preventing Na+/vacancy ordering by breaking charge ordering in the transition metal layer opens a simple way to design disordered electrode materials with high power density and long cycle life.

[1]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[2]  V. Nalbandyan,et al.  Hexagonal sodium titanate chromite : A new high-conductivity solid electrolyte , 1997 .

[3]  Andreas Nieder,et al.  Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds , 2013, Nature Communications.

[4]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[5]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[6]  C. Delmas,et al.  Vanadium Clustering/Declustering in P2–Na1/2VO2 Layered Oxide , 2014 .

[7]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[8]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[9]  K. Kubota,et al.  New Insight into Structural Evolution in Layered NaCrO2 during Electrochemical Sodium Extraction , 2015 .

[10]  J. Goodenough,et al.  Na 2 Ni 2 TeO 6 : Evaluation as a cathode for sodium battery , 2013, Journal of Power Sources.

[11]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[12]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[13]  C. Delmas,et al.  New P2 - Na0.70Mn0.60Ni0.30Co0.10O2 Layered Oxide as Electrode Material for Na-Ion Batteries , 2014 .

[14]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[15]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[16]  A. Manthiram,et al.  Neutron Diffraction and Electrochemical Studies of Na0.79CoO2 and Na0.79Co0.7Mn0.3O2 Cathodes for Sodium-Ion Batteries , 2014 .

[17]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[18]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[19]  Zhonghua Lu,et al.  In Situ X-Ray Diffraction Study of P 2 ­ Na2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2 , 2001 .

[20]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[21]  Y. Meng,et al.  An advanced cathode for Na-ion batteries with high rate and excellent structural stability. , 2013, Physical chemistry chemical physics : PCCP.

[22]  A. Yamada,et al.  Electrode Properties of P2–Na2/3MnyCo1–yO2 as Cathode Materials for Sodium-Ion Batteries , 2013 .

[23]  W. C. Hamilton Significance tests on the crystallographic R factor , 1965 .

[24]  F. Chou,et al.  Sodium-ion diffusion and ordering in single-crystal P 2 -Na x CoO 2 , 2008 .

[25]  R. Shanmugam,et al.  Na2/3Ni1/3Ti2/3O2: “Bi-Functional” Electrode Materials for Na-Ion Batteries , 2014 .

[26]  Crystal structure of the sodium cobaltate deuterate superconductor Na x CoO 2 ⋅ 4 x D 2 O ( x ≈ 1 3 ) , 2003, cond-mat/0307627.

[27]  A. van de Walle,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002 .

[28]  M. Avdeev,et al.  Crystal Structure of the Sodium Cobaltate Deuterate Superconductor NaxCoO2-4xD2O (x=1/3) , 2004 .

[29]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[30]  Xiqian Yu,et al.  Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy , 2013 .

[31]  B. Hwang,et al.  The P2-Na(2/3)Co(2/3)Mn(1/3)O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. , 2011, Dalton transactions.

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  Bruno Scrosati,et al.  An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. , 2014, Nano letters.

[34]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[35]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[36]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[37]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[38]  Wei He,et al.  Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries , 2013 .

[39]  C. Delmas,et al.  Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1−yFeyO2 (y = 0, 1/3, 2/3) , 2012 .

[40]  C. Delmas,et al.  Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries , 2013 .

[41]  K. Kubota,et al.  P2-type Na(2/3)Ni(1/3)Mn(2/3-x)Ti(x)O2 as a new positive electrode for higher energy Na-ion batteries. , 2014, Chemical communications.

[42]  H. Ahn,et al.  Single crystalline Na(0.7)MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. , 2013, Chemistry.

[43]  Fujio Izumi,et al.  Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting , 2013, Powder Diffraction.

[44]  K. Kubota,et al.  New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries , 2014 .

[45]  B. Batlogg,et al.  1D to 2D Na+ ion diffusion inherently linked to structural transitions in Na0.7CoO2. , 2013, Physical review letters.

[46]  Luis Sánchez,et al.  Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells , 2002 .

[47]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[48]  Jiangfeng Qian,et al.  P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery , 2014 .

[49]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[50]  Xin Li,et al.  Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2. , 2014, Nature materials.

[51]  Y. Meng,et al.  Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries , 2014 .

[52]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[53]  K. Kubota,et al.  Layered oxides as positive electrode materials for Na-ion batteries , 2014 .

[54]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[55]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[56]  Ralf Eggeling,et al.  User guide , 2000 .

[57]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[58]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[59]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[60]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[61]  K. Kubota,et al.  A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity , 2014 .

[62]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[63]  Haoshen Zhou,et al.  An ultrastable anode for long-life room-temperature sodium-ion batteries. , 2014, Angewandte Chemie.