Self-assembly of electronically abrupt borophene/organic lateral heterostructures

Integrating borophene with organic molecules results in electronically abrupt self-assembled lateral heterostructures. Two-dimensional boron sheets (that is, borophene) have recently been realized experimentally and found to have promising electronic properties. Because electronic devices and systems require the integration of multiple materials with well-defined interfaces, it is of high interest to identify chemical methods for forming atomically abrupt heterostructures between borophene and electronically distinct materials. Toward this end, we demonstrate the self-assembly of lateral heterostructures between borophene and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). These lateral heterostructures spontaneously form upon deposition of PTCDA onto submonolayer borophene on Ag(111) substrates as a result of the higher adsorption enthalpy of PTCDA on Ag(111) and lateral hydrogen bonding among PTCDA molecules, as demonstrated by molecular dynamics simulations. In situ x-ray photoelectron spectroscopy confirms the weak chemical interaction between borophene and PTCDA, while molecular-resolution ultrahigh-vacuum scanning tunneling microscopy and spectroscopy reveal an electronically abrupt interface at the borophene/PTCDA lateral heterostructure interface. As the first demonstration of a borophene-based heterostructure, this work will inform emerging efforts to integrate borophene into nanoelectronic applications.

[1]  R. Miranda,et al.  Molecular Self‐Assembly at Solid Surfaces , 2011, Advanced materials.

[2]  Claude Lecomte,et al.  Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities , 1998 .

[3]  M. Hersam,et al.  Graphene–Silicon Heterostructures at the Two-Dimensional Limit , 2015 .

[4]  R. Agrawal,et al.  Mechanism of Resistive Switching in 3, 4, 9, 10 Perylenetetracarboxylic Dianhydride (PTCDA) Sandwiched Between Metal Electrodes , 2008, IEEE Transactions on Electron Devices.

[5]  Lei Liu,et al.  Spatially resolved one-dimensional boundary states in graphene–hexagonal boron nitride planar heterostructures , 2014, Nature Communications.

[6]  J. Topple,et al.  Strain induced dewetting of a molecular system: bimodal growth of PTCDA on NaCl. , 2008, Physical review letters.

[7]  Joseph W. Lyding,et al.  Inertial tip translator for a scanning tunneling microscope , 1993 .

[8]  Wang Yao,et al.  Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.

[9]  Point Defects and Grain Boundaries in Rotationally Commensurate MoS2 on Epitaxial Graphene , 2016, 1604.00682.

[10]  M. Szymoński,et al.  Nanofabrication of PTCDA molecular chains on rutile TiO(2)(011)-(2 × 1) surfaces. , 2008, Nanotechnology.

[11]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[12]  Andrew T. S. Wee,et al.  Bandgap tunability at single-layer molybdenum disulphide grain boundaries , 2015, Nature Communications.

[13]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[14]  J. Prauzner-Bechcicki,et al.  Characterization of PTCDA nanocrystals on Ge(0 0 1):H-(2 × 1) surfaces , 2015 .

[15]  M. Rohlfing,et al.  Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface : PTCDA on Ag(111) , 2007 .

[16]  M. Hersam,et al.  Mixed-dimensional van der Waals heterostructures. , 2016, Nature materials.

[17]  D. A. Shirley,et al.  Characteristic energy loss structure of solids from x-ray photoemission spectra , 1974 .

[18]  T. Shimoda,et al.  Control of carrier density by self-assembled monolayers in organic field-effect transistors , 2004, Nature materials.

[19]  Y. Sugawara,et al.  The atomic resolution imaging of metallic Ag(111) surface by noncontact atomic force microscope , 1999 .

[20]  Y. Nishi,et al.  Structural and Electrical Investigation of C60-Graphene Vertical Heterostructures. , 2015, ACS nano.

[21]  M. Hersam,et al.  Cryogenic variable temperature ultrahigh vacuum scanning tunneling microscope for single molecule studies on silicon surfaces , 2004 .

[22]  Lai‐Sheng Wang,et al.  Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. , 2014, Accounts of chemical research.

[23]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[24]  M. Hersam,et al.  Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene. , 2016, ACS nano.

[25]  W. Lau,et al.  X-ray photoemission spectroscopy of nonmetallic materials: Electronic structures of boron and BxOy , 2004 .

[26]  Y. Azuma,et al.  Low energy electron diffraction of the system In-[perylene-3,4,9, 10-tetracarboxylic dianhydride] on MoS2 , 2002 .

[27]  E. Umbach,et al.  Strong electron-phonon coupling at a metal/organic interface: PTCDA/Ag(111) , 2002 .

[28]  Ivan A. Popov,et al.  Understanding Boron Through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality , 2014 .

[29]  Barrett E. Eichler,et al.  Synthesis and Characterization of , 2001, Angewandte Chemie.

[30]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[31]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[32]  Hui Li,et al.  Experimental realization of two-dimensional boron sheets. , 2015, Nature chemistry.

[33]  Rodney S. Ruoff,et al.  Crystalline Boron Nanoribbons: Synthesis and Characterization , 2004 .

[34]  Pinshane Y. Huang,et al.  Graphene and boron nitride lateral heterostructures for atomically thin circuitry , 2012, Nature.

[35]  Dong Qian,et al.  Epitaxial growth of two-dimensional stanene. , 2015, Nature materials.

[36]  E. Sutter,et al.  Interface formation in monolayer graphene-boron nitride heterostructures. , 2012, Nano letters.

[37]  H. Katz,et al.  Field-effect-tuned lateral organic diodes , 2010, Proceedings of the National Academy of Sciences.

[38]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[39]  E. Wang,et al.  Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes , 2014, Nature Physics.

[40]  Sohrab Ismail-Beigi,et al.  Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. , 2007, Physical review letters.

[41]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[42]  Probing the synthesis of two-dimensional boron by first-principles computations. , 2013, Angewandte Chemie.

[43]  R. Berndt,et al.  Surface-state lifetime measured by scanning tunneling spectroscopy , 1998 .

[44]  S. Bhowmick,et al.  Polymorphism of two-dimensional boron. , 2012, Nano letters.

[45]  Artem R. Oganov,et al.  Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs , 2015, Science.

[46]  C. Ziegler,et al.  Post deposition purification of PTCDA thin films , 2005 .

[47]  Qing Hua Wang,et al.  Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. , 2009, Nature chemistry.

[48]  S. Soubatch,et al.  Lateral adsorption geometry and site-specific electronic structure of a large organic chemisorbate on a metal surface , 2006 .

[49]  Xiaojun Wu,et al.  Two-dimensional boron monolayer sheets. , 2012, ACS nano.

[50]  R. Berndt,et al.  Local density of states from spectroscopic scanning-tunneling-microscope images: Ag(111) , 1997 .

[51]  F Stefan Tautz,et al.  Direct imaging of intermolecular bonds in scanning tunneling microscopy. , 2010, Journal of the American Chemical Society.

[52]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[53]  J. Schaefer,et al.  Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design , 2003, Nature.

[54]  B. Delley,et al.  Kondo Scattering Observed at a Single Magnetic Impurity , 1998 .

[55]  F. S. Tautz,et al.  Free-electron-like dispersion in an organic monolayer film on a metal substrate , 2006, Nature.