Anaemia in kidney disease: harnessing hypoxia responses for therapy

[1]  T. Hagve,et al.  [Anemia of chronic disease]. , 2017, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke.

[2]  R. Goldschmeding,et al.  Diverse origins of the myofibroblast—implications for kidney fibrosis , 2015, Nature Reviews Nephrology.

[3]  A. Kurtz,et al.  Chronic hypoxia-inducible transcription factor-2 activation stably transforms juxtaglomerular renin cells into fibroblast-like cells in vivo. , 2015, Journal of the American Society of Nephrology : JASN.

[4]  O. Gandrillon,et al.  The role of spatial organization of cells in erythropoiesis , 2013, Journal of mathematical biology.

[5]  J. Keldenich,et al.  Mimicking Hypoxia to Treat Anemia: HIF-Stabilizer BAY 85-3934 (Molidustat) Stimulates Erythropoietin Production without Hypertensive Effects , 2014, PloS one.

[6]  W. Hiatt,et al.  Short-term treatment with a novel HIF-prolyl hydroxylase inhibitor (GSK1278863) failed to improve measures of performance in subjects with claudication-limited peripheral artery disease , 2014, Vascular medicine.

[7]  A. McMahon,et al.  Identification of a Multipotent Self-Renewing Stromal Progenitor Population during Mammalian Kidney Organogenesis , 2014, Stem cell reports.

[8]  S. Rivella,et al.  IDENTIFICATION OF ERYTHROFERRONE AS AN ERYTHROID REGULATOR OF IRON METABOLISM , 2014, Nature Genetics.

[9]  S. Laurie,et al.  HIF and pulmonary vascular responses to hypoxia. , 2014, Journal of applied physiology.

[10]  R. Wenger,et al.  A novel distal upstream hypoxia response element regulating oxygen-dependent erythropoietin gene expression , 2014, Haematologica.

[11]  Andrew P McMahon,et al.  Cell-specific translational profiling in acute kidney injury. , 2014, The Journal of clinical investigation.

[12]  M. Koury Abnormal erythropoiesis and the pathophysiology of chronic anemia. , 2014, Blood reviews.

[13]  W. Jelkmann,et al.  Intolerability of cobalt salt as erythropoietic agent. , 2014, Drug testing and analysis.

[14]  G. Semenza,et al.  Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. , 2014, Annual review of pathology.

[15]  Masayuki Yamamoto,et al.  Erythropoietin production in neuroepithelial and neural crest cells during primitive erythropoiesis , 2013, Nature Communications.

[16]  S. Ro,et al.  [(4-Hydroxyl-benzo[4,5]thieno[3,2-c]pyridine-3-carbonyl)-amino]-acetic acid derivatives; HIF prolyl 4-hydroxylase inhibitors as oral erythropoietin secretagogues. , 2013, Bioorganic & medicinal chemistry letters.

[17]  V. Nizet,et al.  HIF isoforms in the skin differentially regulate systemic arterial pressure , 2013, Proceedings of the National Academy of Sciences.

[18]  S. Ito,et al.  Plasticity of renal erythropoietin-producing cells governs fibrosis. , 2013, Journal of the American Society of Nephrology : JASN.

[19]  G. Semenza,et al.  HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. , 2013, The Journal of clinical investigation.

[20]  K. Pantopoulos,et al.  IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2α mRNA translation. , 2013, Blood.

[21]  M. H. Rabinowitz,et al.  Inhibition of hypoxia-inducible factor prolyl hydroxylase domain oxygen sensors: tricking the body into mounting orchestrated survival and repair responses. , 2013, Journal of medicinal chemistry.

[22]  Masayuki Yamamoto,et al.  A mouse model of adult-onset anaemia due to erythropoietin deficiency , 2013, Nature Communications.

[23]  K. Eckardt,et al.  Deletion of von Hippel-Lindau protein converts renin-producing cells into erythropoietin-producing cells. , 2013, Journal of the American Society of Nephrology : JASN.

[24]  M. Gassmann,et al.  HIF-1α is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2α-induced excessive erythropoiesis. , 2013, Blood.

[25]  M. Hentze,et al.  The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. , 2013, Cell metabolism.

[26]  R. Tuder,et al.  Deletion of iron regulatory protein 1 causes polycythemia and pulmonary hypertension in mice through translational derepression of HIF2α. , 2013, Cell metabolism.

[27]  V. Haase Regulation of erythropoiesis by hypoxia-inducible factors. , 2013, Blood reviews.

[28]  V. Haase,et al.  Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. , 2012, The Journal of clinical investigation.

[29]  E. Savolainen,et al.  Transmembrane prolyl 4-hydroxylase is a fourth prolyl 4-hydroxylase regulating EPO production and erythropoiesis. , 2012, Blood.

[30]  W. Kaelin,et al.  Treatment of erythropoietin deficiency in mice with systemically administered siRNA. , 2012, Blood.

[31]  T. Ganz,et al.  Induction of activin B by inflammatory stimuli up-regulates expression of the iron-regulatory peptide hepcidin through Smad1/5/8 signaling. , 2012, Blood.

[32]  C. Peyssonnaux,et al.  Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis , 2012, Haematologica.

[33]  K. Duffy,et al.  Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. , 2012, American journal of physiology. Renal physiology.

[34]  A. McMahon,et al.  Mammalian kidney development: principles, progress, and projections. , 2012, Cold Spring Harbor perspectives in biology.

[35]  E. Rankin,et al.  The HIF Signaling Pathway in Osteoblasts Directly Modulates Erythropoiesis through the Production of EPO , 2012, Cell.

[36]  Daniel Hidalgo,et al.  Contrasting dynamic responses in vivo of the Bcl-xL and Bim erythropoietic survival pathways. , 2012, Blood.

[37]  C. Peyssonnaux,et al.  Deletion of HIF-2α in the enterocytes decreases the severity of tissue iron loading in hepcidin knockout mice. , 2012, Blood.

[38]  Brian Keith,et al.  HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression , 2011, Nature Reviews Cancer.

[39]  Daniel Bilbao,et al.  FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors , 2011, The EMBO journal.

[40]  B. Krock,et al.  Hypoxia-induced angiogenesis: good and evil. , 2011, Genes & cancer.

[41]  S. Anand,et al.  Herpesvirus entry mediator regulates hypoxia-inducible factor-1α and erythropoiesis in mice. , 2011, The Journal of clinical investigation.

[42]  Tatiana Ammosova,et al.  Chuvash polycythemia VHLR200W mutation is associated with down-regulation of hepcidin expression. , 2011, Blood.

[43]  L. Jorde,et al.  Genetic determinants of Tibetan high-altitude adaptation , 2011, Human Genetics.

[44]  Masayuki Yamamoto,et al.  Isolation and Characterization of Renal Erythropoietin-Producing Cells from Genetically Produced Anemia Mice , 2011, PloS one.

[45]  H. Okano,et al.  Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. , 2011, The Journal of clinical investigation.

[46]  T. Rouault,et al.  Hepcidin regulates ferroportin expression and intracellular iron homeostasis of erythroblasts. , 2011, Blood.

[47]  M. Siatecka,et al.  The multifunctional role of EKLF/KLF1 during erythropoiesis. , 2011, Blood.

[48]  Tetsuhiro Tanaka,et al.  Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner , 2011, Laboratory Investigation.

[49]  J. Aragonés,et al.  Acute Vhl Gene Inactivation Induces Cardiac HIF-Dependent Erythropoietin Gene Expression , 2011, PloS one.

[50]  K. Jishage,et al.  Specific Contribution of the Erythropoietin Gene 3′ Enhancer to Hepatic Erythropoiesis after Late Embryonic Stages , 2011, Molecular and Cellular Biology.

[51]  Y. Liu,et al.  Negative Autoregulation by Fas Stabilizes Adult Erythropoiesis and Accelerates Its Stress Response , 2011, PloS one.

[52]  Jiannis Ragoussis,et al.  High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. , 2011, Blood.

[53]  F. Gonzalez,et al.  Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. , 2011, Gastroenterology.

[54]  S. Bembenek,et al.  Pharmacological Characterization of 1-(5-Chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic Acid (JNJ-42041935), a Potent and Selective Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitor , 2011, Molecular Pharmacology.

[55]  R. Paulson,et al.  Stress erythropoiesis: new signals and new stress progenitor cells , 2011, Current opinion in hematology.

[56]  P. Ney Normal and disordered reticulocyte maturation , 2011, Current opinion in hematology.

[57]  M. Percy,et al.  The HIF pathway and erythrocytosis. , 2011, Annual review of pathology.

[58]  A. M. de Bruin,et al.  Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. , 2010, Blood.

[59]  C. Schofield,et al.  Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. , 2011, Trends in biochemical sciences.

[60]  C. Beaumont,et al.  Erythropoietin stimulates spleen BMP4-dependent stress erythropoiesis and partially corrects anemia in a mouse model of generalized inflammation. , 2010, Blood.

[61]  A. Besarab,et al.  Iron supplementation to treat anemia in patients with chronic kidney disease , 2010, Nature Reviews Nephrology.

[62]  R. Schmieder,et al.  Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. , 2010, Journal of the American Society of Nephrology : JASN.

[63]  P. Ratcliffe,et al.  Regulation of Type II Transmembrane Serine Proteinase TMPRSS6 by Hypoxia-inducible Factors , 2010, The Journal of Biological Chemistry.

[64]  J. Epstein,et al.  Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. , 2010, Blood.

[65]  M. Rämet,et al.  Deficiency of a Transmembrane Prolyl 4-Hydroxylase in the Zebrafish Leads to Basement Membrane Defects and Compromised Kidney Function* , 2010, The Journal of Biological Chemistry.

[66]  W. Kaelin,et al.  Reactivation of Hepatic EPO Synthesis in Mice After PHD Loss , 2010, Science.

[67]  Y. Pei Of mice and men: therapeutic mTOR inhibition in polycystic kidney disease. , 2010, Journal of the American Society of Nephrology : JASN.

[68]  E. Morrisey,et al.  The von Hippel-Lindau Chuvash mutation promotes pulmonary hypertension and fibrosis in mice. , 2010, The Journal of clinical investigation.

[69]  S. Bachmann,et al.  Hypoxia-inducible factor-2alpha-expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-inducible factor stabilization. , 2010, Kidney international.

[70]  R. Garrick A Trial of Darbepoetin Alfa in Type 2 Diabetes and Chronic Kidney Disease , 2010 .

[71]  A. McMahon,et al.  Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. , 2010, The American journal of pathology.

[72]  D. Kleinfeld,et al.  The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice. , 2009, The Journal of clinical investigation.

[73]  V. Haase Pathophysiological Consequences of HIF Activation , 2009, Annals of the New York Academy of Sciences.

[74]  O. Djurdjev,et al.  Hemoglobin variability in nondialysis chronic kidney disease: examining the association with mortality. , 2009, Clinical journal of the American Society of Nephrology : CJASN.

[75]  T. Rouault,et al.  A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. , 2009, Cell metabolism.

[76]  B. Buchholz,et al.  HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. , 2009, The American journal of pathology.

[77]  R. Paus,et al.  Erythropoietin and the skin: a role for epidermal oxygen sensing? , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[78]  J. Yee,et al.  What is so bad about a hemoglobin level of 12 to 13 g/dL for chronic kidney disease patients anyway? , 2009, Advances in chronic kidney disease.

[79]  K. Kalantar-Zadeh,et al.  Intravenous iron versus erythropoiesis-stimulating agents: friends or foes in treating chronic kidney disease anemia? , 2009, Advances in chronic kidney disease.

[80]  F. Gonzalez,et al.  Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. , 2009, Cell metabolism.

[81]  Jerry Kaplan,et al.  The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. , 2008, Cell metabolism.

[82]  D. Brenner,et al.  Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. , 2008, The American journal of pathology.

[83]  M. Celeste Simon,et al.  The impact of O2 availability on human cancer , 2008, Nature Reviews Cancer.

[84]  David W. Smith,et al.  Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. , 2008, American journal of physiology. Renal physiology.

[85]  N. Mohandas,et al.  Erythroblastic islands: niches for erythropoiesis. , 2008, Blood.

[86]  W. Kaelin,et al.  Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. , 2008, Molecular cell.

[87]  B. Beutler,et al.  The Serine Protease TMPRSS6 Is Required to Sense Iron Deficiency , 2008, Science.

[88]  Masayuki Yamamoto,et al.  Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. , 2008, Blood.

[89]  B. D. de Pauw,et al.  Erythrocyte vesiculation: a self‐protective mechanism? , 2008, British journal of haematology.

[90]  Kai-Uwe Eckardt,et al.  Epidermal Sensing of Oxygen Is Essential for Systemic Hypoxic Response , 2008, Cell.

[91]  W. Kaelin,et al.  Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. , 2008, Blood.

[92]  K. Takeda,et al.  Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. , 2008, Blood.

[93]  Christopher J Schofield,et al.  Expanding chemical biology of 2-oxoglutarate oxygenases. , 2008, Nature chemical biology.

[94]  Clara Camaschella,et al.  Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. , 2008, Blood.

[95]  M. McMullin,et al.  A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. , 2008, The New England journal of medicine.

[96]  Y. Fujii‐Kuriyama,et al.  The microenvironment for erythropoiesis is regulated by HIF-2α through VCAM-1 in endothelial cells. Commentary , 2008 .

[97]  S. Nagata Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors , 2007, Immunological reviews.

[98]  M. Laugsch,et al.  Human hair follicles are an extrarenal source and a nonhematopoietic target of erythropoietin , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[99]  J. Tisdale,et al.  HIF prolyl hydroxylase inhibition results in endogenous erythropoietin induction, erythrocytosis, and modest fetal hemoglobin expression in rhesus macaques. , 2007, Blood.

[100]  Kazuhiro Iwai,et al.  Heme Induces Ubiquitination and Degradation of the Transcription Factor Bach1 , 2007, Molecular and Cellular Biology.

[101]  V. Nizet,et al.  Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). , 2007, The Journal of clinical investigation.

[102]  D. Webb,et al.  Endogenous urate production augments plasma antioxidant capacity in healthy lowland subjects exposed to high altitude. , 2007, Chest.

[103]  E. Rankin,et al.  Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. , 2007, The Journal of clinical investigation.

[104]  Jane-Jane Chen Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. , 2007, Blood.

[105]  J. Arias-Stella,et al.  The Heart and Pulmonary Circulation at High Altitudes: Healthy Highlanders and Chronic Mountain Sickness , 2007, Circulation.

[106]  W. Jelkmann Erythropoietin after a century of research: younger than ever , 2007, European journal of haematology.

[107]  R. Johnson,et al.  Acute postnatal ablation of Hif-2α results in anemia , 2007, Proceedings of the National Academy of Sciences.

[108]  T. Ganz Molecular control of iron transport. , 2007, Journal of the American Society of Nephrology : JASN.

[109]  R. Johnson,et al.  Acute postnatal ablation of Hif-2alpha results in anemia. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[110]  S. Mujais,et al.  Erythropoietin is produced by tubular cells of the rat kidney , 2007, Cell Biochemistry and Biophysics.

[111]  J. Manson,et al.  Prospective Study of , 2007 .

[112]  H. Burger,et al.  Normalization of hemoglobin level in patients with chronic kidney disease and anemia. , 2006, The New England journal of medicine.

[113]  Huiman Barnhart,et al.  Correction of anemia with epoetin alfa in chronic kidney disease. , 2006, The New England journal of medicine.

[114]  G. Semenza,et al.  Hypoxia-inducible Factor-1 Deficiency Results in Dysregulated Erythropoiesis Signaling and Iron Homeostasis in Mouse Development* , 2006, Journal of Biological Chemistry.

[115]  T. Rouault The role of iron regulatory proteins in mammalian iron homeostasis and disease , 2006, Nature chemical biology.

[116]  V. Haase Hypoxia-inducible factors in the kidney. , 2006, American journal of physiology. Renal physiology.

[117]  M. Nangaku,et al.  Pathogenesis of renal anemia. , 2006, Seminars in nephrology.

[118]  M. Socolovsky,et al.  Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. , 2006, Blood.

[119]  Manuela Baccarini,et al.  A balance between Raf-1 and Fas expression sets the pace of erythroid differentiation. , 2006, Blood.

[120]  Harvey F Lodish,et al.  Cellular Trafficking and Degradation of Erythropoietin and Novel Erythropoiesis Stimulating Protein (NESP)* , 2006, Journal of Biological Chemistry.

[121]  M. McMullin,et al.  A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[122]  M. Koury Erythropoietin: the story of hypoxia and a finely regulated hematopoietic hormone. , 2005, Experimental hematology.

[123]  G. Camenisch,et al.  Integration of Oxygen Signaling at the Consensus HRE , 2005, Science's STKE.

[124]  P. Kopsombut,et al.  Bcl-x(L) prevents apoptosis of late-stage erythroblasts but does not mediate the antiapoptotic effect of erythropoietin. , 2005, Blood.

[125]  J. Hogenesch,et al.  Gene expression profiling of hypoxia signaling in human hepatocellular carcinoma cells. , 2005, Physiological genomics.

[126]  M. Biffoni,et al.  Multiple Members of the TNF Superfamily Contribute to IFN-γ-Mediated Inhibition of Erythropoiesis1 , 2005, The Journal of Immunology.

[127]  H. Pagel,et al.  Is the renal production of erythropoietin controlled by the brain stem? , 2005, American journal of physiology. Endocrinology and metabolism.

[128]  Y. Yoshikawa,et al.  A novel mechanism in suppression of erythropoiesis during inflammation: a crucial role of RCAS1 , 2005, European journal of haematology.

[129]  J. Richardson,et al.  HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner. , 2005, Blood.

[130]  D. Barber,et al.  Turning cells red: signal transduction mediated by erythropoietin. , 2005, Trends in cell biology.

[131]  C. Dubois,et al.  Hypoxia-enhanced Expression of the Proprotein Convertase Furin Is Mediated by Hypoxia-inducible Factor-1 , 2005, Journal of Biological Chemistry.

[132]  G. Semenza,et al.  Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. , 2005, Blood.

[133]  Alessia Calzolari,et al.  Expression of alternative transcripts of ferroportin-1 during human erythroid differentiation. , 2005, Haematologica.

[134]  Jerry Kaplan,et al.  Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization , 2004, Science.

[135]  J. Prchal,et al.  Regulation of ferrochelatase gene expression by hypoxia. , 2004, Life sciences.

[136]  Elizabeta Nemeth,et al.  IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. , 2004, The Journal of clinical investigation.

[137]  K. Pantopoulos Iron Metabolism and the IRE/IRP Regulatory System: An Update , 2004, Annals of the New York Academy of Sciences.

[138]  M. Brand,et al.  Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[139]  A. Chapman-Smith,et al.  The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. , 2004, The international journal of biochemistry & cell biology.

[140]  J. D. Engel,et al.  Hepatic Erythropoietin Gene Regulation by GATA-4* , 2004, Journal of Biological Chemistry.

[141]  J. Sargent,et al.  Iron Requirements in Hemodialysis , 2004, Blood Purification.

[142]  M. A. Morris,et al.  The HIF family member EPAS 1 / HIF-2 is required for normal hematopoiesis in mice , 2003 .

[143]  Y. Fujii‐Kuriyama,et al.  HLF/HIF‐2α is a key factor in retinopathy of prematurity in association with erythropoietin , 2003, The EMBO journal.

[144]  V. Jorgetti,et al.  IL-1beta, TNF-alpha, TGF-beta, and bFGF expression in bone biopsies before and after parathyroidectomy. , 2003, Kidney international.

[145]  R. Johnson,et al.  Gene expression profiling of the hypoxia signaling pathway in hypoxia-inducible factor 1alpha null mouse embryonic fibroblasts. , 2003, Gene expression.

[146]  M. Gassmann,et al.  Hypoxic up-regulation of erythroid 5-aminolevulinate synthase. , 2003, Blood.

[147]  Gaël Nicolas,et al.  The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. , 2002, The Journal of clinical investigation.

[148]  T. Iwanaga,et al.  Epididymis is a novel site of erythropoietin production in mouse reproductive organs. , 2002, Biochemical and biophysical research communications.

[149]  Christopher J. Schofield,et al.  Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL , 2002, Nature.

[150]  M. Wener,et al.  Hyperuricemia, hypertension, and proteinuria associated with high-altitude polycythemia. , 2002, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[151]  M. Koury,et al.  New insights into erythropoiesis , 2002, Current opinion in hematology.

[152]  E. Swenson,et al.  Excessive erythrocytosis, chronic mountain sickness, and serum cobalt levels , 2002, The Lancet.

[153]  D. Andress,et al.  Cytokine accumulation in osteitis fibrosa of renal osteodystrophy. , 2002, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[154]  H. Lodish,et al.  The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. , 2001, Molecular cell.

[155]  M. Gassmann,et al.  Erythropoietin expression in primary rat Sertoli and peritubular myoid cells. , 2001, Blood.

[156]  S. McKnight,et al.  A Conserved Family of Prolyl-4-Hydroxylases That Modify HIF , 2001, Science.

[157]  Michael I. Wilson,et al.  C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation , 2001, Cell.

[158]  P. Ratcliffe,et al.  Independent function of two destruction domains in hypoxia‐inducible factor‐α chains activated by prolyl hydroxylation , 2001, The EMBO journal.

[159]  S. White,et al.  HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[160]  M. Ivan,et al.  HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing , 2001, Science.

[161]  Michael I. Wilson,et al.  Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation , 2001, Science.

[162]  G. Semenza HIF-1 and mechanisms of hypoxia sensing. , 2001, Current opinion in cell biology.

[163]  I. Macdougall,et al.  Role of uremic toxins in exacerbating anemia in renal failure. , 2001, Kidney international. Supplement.

[164]  J. Fandrey,et al.  Erythropoietin gene expression in different areas of the developing human central nervous system. , 2000, Brain research. Developmental brain research.

[165]  H. Mohrenweiser,et al.  Production and processing of erythropoietin receptor transcripts in brain. , 2000, Brain research. Molecular brain research.

[166]  B. Mazumder,et al.  Role of Hypoxia-inducible Factor-1 in Transcriptional Activation of Ceruloplasmin by Iron Deficiency* , 2000, The Journal of Biological Chemistry.

[167]  J. Cook,et al.  Effects of erythropoietin therapy on iron absorption in chronic renal failure. , 2000, The Journal of laboratory and clinical medicine.

[168]  S. Masuda,et al.  The oviduct produces erythropoietin in an estrogen- and oxygen-dependent manner. , 2000, American journal of physiology. Endocrinology and metabolism.

[169]  E. Mackenzie,et al.  Neurons and astrocytes express EPO mRNA: Oxygen‐sensing mechanisms that involve the redox‐state of the brain , 2000, Glia.

[170]  Avid,et al.  THE EFFECTS OF NORMAL AS COMPARED WITH LOW HEMATOCRIT VALUES IN PATIENTS WITH CARDIAC DISEASE WHO ARE RECEIVING HEMODIALYSIS AND EPOETIN , 2000 .

[171]  C. Kellendonk,et al.  The glucocorticoid receptor is required for stress erythropoiesis. , 1999, Genes & development.

[172]  M. Simon,et al.  Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. , 1999, Genes & development.

[173]  L. Bianchi,et al.  Transferrin Receptor Induction by Hypoxia , 1999, The Journal of Biological Chemistry.

[174]  C. Lok,et al.  Identification of a Hypoxia Response Element in the Transferrin Receptor Gene* , 1999, The Journal of Biological Chemistry.

[175]  I. Wilson,et al.  Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. , 1999, Science.

[176]  G. Stassi,et al.  Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. , 1999, Blood.

[177]  G. Semenza,et al.  Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. , 1999, Annual review of cell and developmental biology.

[178]  M. Zenke,et al.  Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. , 1998, Blood.

[179]  S. Masuda,et al.  Estrogen-dependent Production of Erythropoietin in Uterus and Its Implication in Uterine Angiogenesis* , 1998, The Journal of Biological Chemistry.

[180]  R. Fudin,et al.  Correction of Uremic Iron Deficiency Anemia in Hemodialyzed Patients: A Prospective Study , 1998, Nephron.

[181]  J. Price,et al.  Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon gamma to produce erythroid cell apoptosis. , 1998, Blood.

[182]  J. Fandrey,et al.  Erythropoietin mRNA expression in human fetal and neonatal tissue. , 1998, Blood.

[183]  W. Jelkmann,et al.  Erythropoietin gene expression is suppressed after lipopolysaccharide or interleukin-1 beta injections in rats. , 1997, The American journal of physiology.

[184]  M. Gassmann,et al.  Oxygen-regulated Transferrin Expression Is Mediated by Hypoxia-inducible Factor-1* , 1997, The Journal of Biological Chemistry.

[185]  H. Lin,et al.  Electron microscopic localization of lacZ expression in the proximal convoluted tubular cells of the kidney in transgenic mice carrying chimeric erythropoietin/lacZ gene constructs. , 1997, Journal of structural biology.

[186]  G. Semenza,et al.  Hypoxia-inducible Factor-1 Mediates Transcriptional Activation of the Heme Oxygenase-1 Gene in Response to Hypoxia* , 1997, The Journal of Biological Chemistry.

[187]  M. Gassmann,et al.  Detection of erythropoietin in human liquor: intrinsic erythropoietin production in the brain. , 1997, Kidney international.

[188]  P. Ponka Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. , 1997, Blood.

[189]  I. Macdougall,et al.  A randomized controlled study of iron supplementation in patients treated with erythropoietin. , 1996, Kidney international.

[190]  M. Gassmann,et al.  Erythropoietin Gene Expression in Human, Monkey and Murine Brain , 1996, The European journal of neuroscience.

[191]  Rudolf Jaenisch,et al.  Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor , 1995, Cell.

[192]  K. Penta,et al.  Erythropoietin cell biology. , 1994, Hematology/oncology clinics of North America.

[193]  H. Lin,et al.  Transgenic mice carrying the erythropoietin gene promoter linked to lacZ express the reporter in proximal convoluted tubule cells after hypoxia. , 1994, Blood.

[194]  P. Ratcliffe,et al.  Expression of a homologously recombined erythopoietin-SV40 T antigen fusion gene in mouse liver: evidence for erythropoietin production by Ito cells. , 1994, Blood.

[195]  G. Semenza,et al.  Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. , 1993, Blood.

[196]  P. Ratcliffe,et al.  Identification of the renal erythropoietin-producing cells using transgenic mice. , 1993, Kidney international.

[197]  M. Koury,et al.  Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities: a mechanism for controlled rates of erythrocyte production. , 1993, Blood.

[198]  K. Muta,et al.  Apoptosis of human erythroid colony‐forming cells is decreased by stem cell factor and insulin‐like growth factor I as well as erythropoietin , 1993, Journal of cellular physiology.

[199]  O. Silvennoinen,et al.  JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin , 1993, Cell.

[200]  G. Semenza,et al.  General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[201]  H. Lodish,et al.  Structure, function, and activation of the erythropoietin receptor. , 1993, Blood.

[202]  M. Le Hir,et al.  Co-localization of erythropoietin mRNA and ecto-5'-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. , 1993, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[203]  J. Fandrey,et al.  In vivo and in vitro regulation of erythropoietin mRNA: measurement by competitive polymerase chain reaction. , 1993, Blood.

[204]  W. Jelkmann Erythropoietin: structure, control of production, and function. , 1992, Physiological reviews.

[205]  S. Antonarakis,et al.  Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[206]  G. Semenza,et al.  Localization of cells producing erythropoietin in murine liver by in situ hybridization. , 1991, Blood.

[207]  M. Goldberg,et al.  Erythropoietin mRNA levels are governed by both the rate of gene transcription and posttranscriptional events. , 1991, Blood.

[208]  B J Barnum,et al.  On good and evil. , 1991, Nursing & health care : official publication of the National League for Nursing.

[209]  S. Piantadosi,et al.  Decreased erythropoietin response in patients with the anemia of cancer. , 1990, The New England journal of medicine.

[210]  M. Koury,et al.  Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. , 1990, Science.

[211]  A. Maxwell,et al.  Erythropoietin production in kidney tubular cells , 1990, British journal of haematology.

[212]  S. Antonarakis,et al.  Human erythropoietin gene expression in transgenic mice: multiple transcription initiation sites and cis-acting regulatory elements , 1990, Molecular and cellular biology.

[213]  M. Koury,et al.  Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration , 1989 .

[214]  K. Eckardt,et al.  Regulation of erythropoietin production is related to proximal tubular function. , 1989, The American journal of physiology.

[215]  S. Antonarakis,et al.  Polycythemia in transgenic mice expressing the human erythropoietin gene. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[216]  K. Eckardt,et al.  Single-dose pharmacokinetics of recombinant human erythropoietin in patients with various degrees of renal failure. , 1989, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[217]  R. Weinmann,et al.  Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure. , 1989, Blood.

[218]  M. Koury,et al.  Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. , 1989, Blood.

[219]  M. Koury,et al.  Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells , 1988, Journal of cellular physiology.

[220]  F. Wendling,et al.  Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. , 1988, The Journal of clinical investigation.

[221]  M. Koury,et al.  Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. , 1988, Blood.

[222]  M A Goldberg,et al.  The regulated expression of erythropoietin by two human hepatoma cell lines. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[223]  E. Goldwasser,et al.  Blunted erythropoietin response to anaemia in rheumatoid arthritis , 1987, British journal of haematology.

[224]  K. Johnson An Update. , 1984, Journal of food protection.

[225]  A. Eaves,et al.  Human marrow cells capable of erythropoietic differentiation in vitro: definition of three erythroid colony responses. , 1977, Blood.

[226]  W. Fried The liver as a source of extrarenal erythropoietin production. , 1972, Blood.

[227]  M. S. Edwards,et al.  Use of cobaltous chloride in anaemia of maintenance hemodialysis patients. , 1971, Lancet.

[228]  W. Fried,et al.  Studies on extrarenal erythropoietin. , 1969, The Journal of laboratory and clinical medicine.

[229]  E. Goldwasser,et al.  Studies on erythropoiesis. V. The effect of cobalt on the production of erythropoietin. , 1958, Blood.

[230]  E. Goldwasser,et al.  Mechanism of the erythropoietic effect of cobalt. , 1957, Science.

[231]  E. Goldwasser,et al.  Role of the Kidney in Erythropoiesis , 1957, Nature.