Entropy Generation Minimization analysis of oscillating-flow regenerators

Abstract The thermodynamic efficiencies of regenerative cooling cycles are directly linked to the heat transfer effectiveness and thermal losses in the regenerator. This paper proposes a performance analysis for regenerators based on the Entropy Generation Minimization (EGM) theory. The mathematical model consists of the one-dimensional Brinkman–Forchheimer equation to describe the fluid flow in the porous matrix and coupled energy equations to determine the temperatures in the fluid and solid phases. The cycle-average entropy generation contributions due to axial heat conduction, fluid friction and interstitial heat transfer are calculated. The influences of parameters such as the mass flow rate, operating frequency, regenerator cross sectional area, housing aspect ratio, utilization factor and particle diameter are evaluated according to the variable geometry (VG) and fixed face (cross-section) area (FA) performance evaluation criteria (PEC). Optimal regenerator configurations are found for each PEC for flow rates between 40 and 300 kg/h (0.01 and 0.083 kg/s) and frequencies between 1 and 4 Hz with constraints of regenerator effectiveness equal to 95% and temperature span of 40 K.

[1]  A. Bejan Advanced Engineering Thermodynamics , 1988 .

[2]  Felix Hueber,et al.  Principles Of Enhanced Heat Transfer , 2016 .

[3]  Jader R. Barbosa,et al.  Optimization of Peripheral Finned-Tube Evaporators Using Entropy Generation Minimization , 2012 .

[4]  Frank Kreith,et al.  Thermal energy storage and regeneration , 1981 .

[5]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[6]  John F. Brady,et al.  Dispersion in fixed beds , 1985, Journal of Fluid Mechanics.

[7]  S. Ergun Fluid flow through packed columns , 1952 .

[8]  Marko Ožbolt,et al.  Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives , 2014 .

[9]  Tianshou Zhao,et al.  HEAT TRANSFER IN OSCILLATORY FLOWS , 1998 .

[10]  C. Hermes Conflation of ε-Ntu and EGM design methods for heat exchangers with uniform wall temperature , 2012 .

[11]  A. Bejan Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes , 1995 .

[12]  H. Johnstone,et al.  Heat and mass transfer in packed beds , 1955 .

[13]  P. Egolf,et al.  A review of magnetic refrigerator and heat pump prototypes built before the year 2010 , 2010 .

[14]  C. L. Tien,et al.  Fundamental principles of heat transfer , 1977 .

[15]  P. Egolf,et al.  Thermodynamics of magnetic refrigeration , 2006 .

[16]  R. Krane,et al.  A Second Law analysis of the optimum design and operation of thermal energy storage systems , 1987 .

[17]  Akira Nakayama,et al.  A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media , 2001 .

[18]  Marko Ožbolt,et al.  Electrocaloric vs. magnetocaloric energy conversion , 2014 .

[19]  F. X. Grau,et al.  A modification of a Nusselt number correlation for forced convection in porous media , 2010 .

[20]  G. R. Hadley,et al.  Thermal conductivity of packed metal powders , 1986 .

[21]  Second law analysis of a cyclic regenerator in presence of longitudinal heat conduction in matrix , 1999 .

[22]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[23]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[24]  D. P. Sekulic,et al.  Fundamentals of Heat Exchanger Design , 2003 .

[25]  Andrew Rowe,et al.  Experimental assessment of the thermal–hydraulic performance of packed-sphere oscillating-flow regenerators using water , 2014 .

[26]  Thermodynamic optimization of regenerators , 1991 .

[27]  R. Ackermann,et al.  Cryogenic Regenerative Heat Exchangers , 2013 .

[28]  Kwanwoo Nam,et al.  Development of parallel wire regenerator for cryocoolers , 2006 .

[29]  Andrej Kitanovski,et al.  Magnetocaloric Energy Conversion: From Theory to Applications , 2015 .

[30]  Tianshou Zhao,et al.  Oscillatory Heat Transfer in a Pipe Subjected to a Laminar Reciprocating Flow , 1996 .

[31]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[32]  Jader R. Barbosa,et al.  Assessment of demagnetization phenomena in the performance of an active magnetic regenerator , 2012 .

[33]  K. K. Nielsen,et al.  Review on numerical modeling of active magnetic regenerators for room temperature applications , 2011 .

[34]  Andrew Rowe,et al.  Modeling of Thermomagnetic Phenomena in Active Magnetocaloric Regenerators , 2014 .

[35]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[36]  A. T. Prata,et al.  A 2D hybrid model of the fluid flow and heat transfer in a reciprocating active magnetic regenerator , 2012 .

[37]  de Atam Fons Waele,et al.  Thermodynamical aspects of pulse tubes , 1997 .