Fluids with anisotropic viscosity

Motivated by rotating fluids, we study incompressible fluids with anisotropic viscosity. We use anisotropic spaces that enable us to prove existence theorems for less regular initial data than usual. In the case of rotating fluids, in the whole space, we prove Strichartz-type anisotropic, dispersive estimates which allow us to prove global wellposedness for fast enough rotation.

[1]  B. Desjardins,et al.  Derivation of quasi-geostrophic potential vorticity equations , 1998, Advances in Differential Equations.

[2]  Résolution des équations de Navier-Stokes dans des espaces anisotropes , 1997 .

[3]  N. Lerner,et al.  Flow of Non-Lipschitz Vector-Fields and Navier-Stokes Equations , 1995 .

[4]  M. Sablé-Tougeron,et al.  Régularité microlocale pour des problèmes aux limites non linéaires , 1984 .

[5]  B. Desjardins,et al.  Low Mach number limit of viscous compressible flows in the whole space , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  J. Holton Geophysical fluid dynamics. , 1983, Science.

[7]  W. Elsasser,et al.  The Theory of Rotating Fluids: Cambridge Monograph on Mechanics and Applied Mathematics , 1969 .

[8]  Benoît Desjardins,et al.  On the Homogeneous Model of Wind-Driven Ocean Circulation , 1999, SIAM J. Appl. Math..

[9]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[10]  B. Nicolaenko,et al.  Integrability and Regularity of 3D Euler and Navier-Stokes Equations for Uniformly Rotating Fluids , 1996 .

[11]  Harvey P. Greenspan,et al.  The Theory of Rotating Fluids. By H. P. GREENSPAN. Cambridge University Press, 1968. 327 pp. £5.50. , 1972, Journal of Fluid Mechanics.

[12]  I. Gallagher The tridimensional Navier-Stokes equations with almost bidimensional data: stability, uniqueness, and life span , 1997 .

[13]  D. Iftimie The resolution of the Navier-Stokes equations in anisotropic spaces , 1999 .

[14]  J. Chemin,et al.  À propos d'un problème de pénalisation de type antisymétrique , 1997 .

[15]  B. Desjardins,et al.  Anisotropy and dispersion in rotating fluids , 2002 .

[16]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[17]  E. Grenier,et al.  Ekman layers of rotating fluids, the case of well prepared initial data , 1997 .

[18]  M. Reed,et al.  Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension , 1982 .

[19]  J. Chemin,et al.  Fluides parfaits incompressibles , 2018, Astérisque.

[20]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .