High spatiotemporal vessel-specific hemodynamic mapping with multi-echo single-vessel fMRI

High-resolution fMRI enables noninvasive mapping of the hemodynamic responses from individual penetrating vessels in animal brains. Here, a 2D multi-echo single-vessel fMRI (MESV-fMRI) method has been developed to map the fMRI signal from arterioles and venules with a 100 ms sampling rate at multiple echo times (TE, 3–30 ms) and short acquisition windows (<1 ms). The T2*-weighted signal shows the increased extravascular effect on venule voxels as a function of TE. In contrast, the arteriole voxels show an increased fMRI signal with earlier onset than venules voxels at the short TE (3 ms) with increased blood inflow and volume effects. MESV-fMRI enables vessel-specific T2* mapping and presents T2*-based fMRI time courses with higher contrast-to-noise ratios (CNRs) than the T2*-weighted fMRI signal at a given TE. The vessel-specific T2* mapping also allows semi-quantitative estimation of the oxygen saturation levels (Y) and their changes (ΔY) at a given blood volume fraction upon neuronal activation. The MESV-fMRI method enables vessel-specific T2* measurements with high spatiotemporal resolution for better modeling of the fMRI signal based on the hemodynamic parameters.

[1]  M. Décorps,et al.  Vessel size imaging , 2001, Magnetic resonance in medicine.

[2]  Afonso C. Silva,et al.  Laminar specificity of functional MRI onset times during somatosensory stimulation in rat , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[3]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[4]  Kazuto Masamoto,et al.  Changes in Cerebral Arterial, Tissue and Venous Oxygenation with Evoked Neural Stimulation: Implications for Hemoglobin-Based Functional Neuroimaging , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  R. Buxton,et al.  A Model for the Coupling between Cerebral Blood Flow and Oxygen Metabolism during Neural Stimulation , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  David Kleinfeld,et al.  Penetrating arterioles are a bottleneck in the perfusion of neocortex , 2007, Proceedings of the National Academy of Sciences.

[7]  G. Zaharchuk,et al.  Theoretical Basis of Hemodynamic MR Imaging Techniques to Measure Cerebral Blood Volume, Cerebral Blood Flow, and Permeability , 2007, American Journal of Neuroradiology.

[8]  Nikolaus Weiskopf,et al.  Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI , 2005, NeuroImage.

[9]  Noah D. Brenowitz,et al.  Integrated strategy for improving functional connectivity mapping using multiecho fMRI , 2013, Proceedings of the National Academy of Sciences.

[10]  A. Dale,et al.  Coupling of Total Hemoglobin Concentration, Oxygenation, and Neural Activity in Rat Somatosensory Cortex , 2003, Neuron.

[11]  Ravi S. Menon,et al.  Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. , 1997, Journal of neurophysiology.

[12]  N. Logothetis,et al.  High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses , 2012, Neuron.

[13]  Klaus Scheffler,et al.  The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI , 2017, NeuroImage.

[14]  Nicholas P. Blockley,et al.  A streamlined acquisition for mapping baseline brain oxygenation using quantitative BOLD , 2017, NeuroImage.

[15]  Seong-Gi Kim,et al.  Spatiotemporal characteristics and vascular sources of neural-specific and -nonspecific fMRI signals at submillimeter columnar resolution , 2013, NeuroImage.

[16]  Y Usson,et al.  In vivo assessment of tumoral angiogenesis , 2004, Magnetic resonance in medicine.

[17]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  R. Turner,et al.  Recent Advances in High-Resolution MR Application and Its Implications for Neurovascular Coupling Research , 2010, Front. Neuroenerg..

[19]  D. Tank,et al.  4 Tesla gradient recalled echo characteristics of photic stimulation‐induced signal changes in the human primary visual cortex , 1993 .

[20]  Donald S. Williams,et al.  Perfusion imaging , 1992, Magnetic resonance in medicine.

[21]  Almut Schüz,et al.  Vascularization of Cytochrome Oxidase-Rich Blobs in the Primary Visual Cortex of Squirrel and Macaque Monkeys , 2011, The Journal of Neuroscience.

[22]  J C Gore,et al.  Physiological basis for BOLD MR signal changes due to neuronal stimulation: Separation of blood volume and magnetic susceptibility effects , 1998, Magnetic resonance in medicine.

[23]  E. Haacke,et al.  Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime , 1994, Magnetic resonance in medicine.

[24]  Robert Turner,et al.  Techniques for imaging neuroscience. , 2003, British medical bulletin.

[25]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[26]  Junjie Yao,et al.  Photoacoustic microscopy of microvascular responses to cortical electrical stimulation. , 2011, Journal of biomedical optics.

[27]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[28]  N. McLoughlin,et al.  Neurovascular coupling investigated with two‐dimensional optical imaging spectroscopy in rat whisker barrel cortex , 2005, The European journal of neuroscience.

[29]  L. Toth,et al.  How accurate is magnetic resonance imaging of brain function? , 2003, Trends in Neurosciences.

[30]  David J. Dubowitz,et al.  CBF/CMRO2 coupling measured with calibrated BOLD fMRI: Sources of bias , 2007, NeuroImage.

[31]  B. Rosen,et al.  fMRI hemodynamics accurately reflects neuronal timing in the human brain measured by MEG , 2013, NeuroImage.

[32]  A. Grinvald,et al.  Non-invasive visualization of cortical columns by fMRI , 2000, Nature Neuroscience.

[33]  Anders M. Dale,et al.  Large arteriolar component of oxygen delivery implies safe margin of oxygen supply to cerebral tissue , 2014, Nature Communications.

[34]  D. Kleinfeld,et al.  Topological basis for the robust distribution of blood to rodent neocortex , 2010, Proceedings of the National Academy of Sciences.

[35]  Benedikt A. Poser,et al.  Investigating the benefits of multi-echo EPI for fMRI at 7 T , 2009, NeuroImage.

[36]  You-Yin Chen,et al.  Ultra high-resolution fMRI and electrophysiology of the rat primary somatosensory cortex , 2013, NeuroImage.

[37]  Nicholas P. Blockley,et al.  Simulations of the effect of diffusion on asymmetric spin echo based quantitative BOLD: An investigation of the origin of deoxygenated blood volume overestimation , 2019, NeuroImage.

[38]  D. Yablonskiy,et al.  Validation of oxygen extraction fraction measurement by qBOLD technique , 2008, Magnetic resonance in medicine.

[39]  Markus Barth,et al.  Contrast‐to‐noise ratio (CNR) as a quality parameter in fMRI , 2007, Journal of magnetic resonance imaging : JMRI.

[40]  R. Weisskoff,et al.  MRI susceptometry: Image‐based measurement of absolute susceptibility of MR contrast agents and human blood , 1992, Magnetic resonance in medicine.

[41]  A. Grinvald,et al.  Interactions Between Electrical Activity and Cortical Microcirculation Revealed by Imaging Spectroscopy: Implications for Functional Brain Mapping , 1996, Science.

[42]  Richard B. Buxton,et al.  Dynamic models of BOLD contrast , 2012, NeuroImage.

[43]  Alan P. Koretsky,et al.  3D mapping of somatotopic reorganization with small animal functional MRI , 2010, NeuroImage.

[44]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[45]  Thomas Christen,et al.  Evaluation of a quantitative blood oxygenation level‐dependent (qBOLD) approach to map local blood oxygen saturation , 2010, NMR in biomedicine.

[46]  Guy B. Williams,et al.  Quantitative phenomenological model of the BOLD contrast mechanism. , 2011, Journal of magnetic resonance.

[47]  Hellmut Merkle,et al.  Sensory and optogenetically driven single-vessel fMRI , 2016, Nature Methods.

[48]  K. Uğurbil,et al.  Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields , 2003, Magnetic resonance in medicine.

[49]  D. Yablonskiy,et al.  Quantitative BOLD: Mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state , 2007, Magnetic resonance in medicine.

[50]  B. Rosen,et al.  Functional mapping of the human visual cortex by magnetic resonance imaging. , 1991, Science.

[51]  Weili Lin,et al.  Quantitative Measurements of Cerebral Blood Oxygen Saturation Using Magnetic Resonance Imaging , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[52]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Tao Jin,et al.  Spatial Resolution of fMRI Techniques , 2010 .

[54]  D. Kleinfeld,et al.  Stimulus-Induced Changes in Blood Flow and 2-Deoxyglucose Uptake Dissociate in Ipsilateral Somatosensory Cortex , 2008, The Journal of Neuroscience.

[55]  Klaas E. Stephan,et al.  A hemodynamic model for layered BOLD signals , 2016, NeuroImage.

[56]  David A Boas,et al.  Estimating cerebral oxygen metabolism from fMRI with a dynamic multicompartment Windkessel model , 2009, Human brain mapping.

[57]  Kamil Ugurbil,et al.  An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging , 2009, NeuroImage.

[58]  A. Koretsky,et al.  Deciphering laminar-specific neural inputs with line-scanning fMRI , 2013, Nature Methods.

[59]  J. Pekar,et al.  Functional magnetic resonance imaging based on changes in vascular space occupancy , 2003, Magnetic resonance in medicine.

[60]  Jeff H. Duyn,et al.  The future of ultra-high field MRI and fMRI for study of the human brain , 2012, NeuroImage.

[61]  Eric R. Muir,et al.  MRI of brain tissue oxygen tension under hyperbaric conditions , 2016, NeuroImage.

[62]  Norihiko Fujita,et al.  Quantitative mapping of cerebral deoxyhemoglobin content using MR imaging , 2003, NeuroImage.

[63]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[64]  Rein van den Boomgaard,et al.  Methods for fast morphological image transforms using bitmapped binary images , 1992, CVGIP Graph. Model. Image Process..

[65]  D. Norris,et al.  BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: Parallel‐acquired inhomogeneity‐desensitized fMRI , 2006, Magnetic resonance in medicine.

[66]  R. Turner Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[67]  Seong-Gi Kim,et al.  Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: Implications for BOLD fMRI , 2001, Magnetic resonance in medicine.

[68]  Bruce R. Rosen,et al.  Ultra-Slow Single-Vessel BOLD and CBV-Based fMRI Spatiotemporal Dynamics and Their Correlation with Neuronal Intracellular Calcium Signals , 2018, Neuron.

[69]  J. Mayhew,et al.  Concurrent fMRI and optical measures for the investigation of the hemodynamic response function , 2005, Magnetic resonance in medicine.

[70]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[71]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[72]  Xin Yu,et al.  Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV–V of the rat whisker–barrel cortex , 2012, NeuroImage.

[73]  Richard B. Buxton,et al.  A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated-BOLD method: Modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal , 2011, NeuroImage.

[74]  P. A. Gowland,et al.  Field strength dependence of R1 and R  2* relaxivities of human whole blood to prohance, vasovist, and deoxyhemoglobin , 2008, Magnetic resonance in medicine.

[75]  R. Buxton,et al.  Dynamics of blood flow and oxygenation changes during brain activation: The balloon model , 1998, Magnetic resonance in medicine.

[76]  Rolf Pohmann,et al.  Contrast at high field: Relaxation times, magnetization transfer and phase in the rat brain at 16.4 T , 2011, Magnetic resonance in medicine.

[77]  Nikos K Logothetis,et al.  Laminar specificity in monkey V1 using high-resolution SE-fMRI. , 2006, Magnetic resonance imaging.

[78]  Klaus Scheffler,et al.  Functional MRI in human subjects with gradient‐echo and spin‐echo EPI at 9.4 T , 2014, Magnetic resonance in medicine.

[79]  K. Scheffler,et al.  Principles and applications of balanced SSFP techniques , 2003, European Radiology.

[80]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[81]  T. Mosher,et al.  Removal of local field gradient artifacts in T2*‐weighted images at high fields by gradient‐echo slice excitation profile imaging , 1998, Magnetic resonance in medicine.

[82]  Xiaoping Hu,et al.  Potential pitfalls of functional MRI using conventional gradient‐recalled echo techniques , 1994, NMR in biomedicine.

[83]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[84]  Felix W. Wehrli,et al.  Interleaved quantitative BOLD: Combining extravascular R2ʹ - and intravascular R2-measurements for estimation of deoxygenated blood volume and hemoglobin oxygen saturation , 2018, NeuroImage.

[85]  Seong-Gi Kim,et al.  Temporal Dynamics and Spatial Specificity of Arterial and Venous Blood Volume Changes during Visual Stimulation: Implication for Bold Quantification , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[86]  Seong-Gi Kim,et al.  Arterial versus Total Blood Volume Changes during Neural Activity-Induced Cerebral Blood Flow Change: Implication for BOLD fMRI , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[87]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[88]  B. Biswal,et al.  High‐resolution fMRI using multislice partial k‐space GR‐EPI with cubic voxels , 2001, Magnetic resonance in medicine.

[89]  Klaus Scheffler,et al.  High‐resolution mapping of neuronal activation with balanced SSFP at 9.4 tesla , 2016, Magnetic resonance in medicine.

[90]  D. Kleinfeld,et al.  Entrainment of Arteriole Vasomotor Fluctuations by Neural Activity Is a Basis of Blood-Oxygenation-Level-Dependent “Resting-State” Connectivity , 2017, Neuron.

[91]  J. Duyn,et al.  Functional MRI impulse response for BOLD and CBV contrast in rat somatosensory cortex , 2007, Magnetic resonance in medicine.

[92]  Anna Devor,et al.  Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation , 2016, Front. Comput. Neurosci..

[93]  Seong-Gi Kim,et al.  High-resolution functional magnetic resonance imaging of the animal brain. , 2003, Methods.

[94]  Hiroto Hatabu,et al.  Changes in T1 and T2 Observed in Brain Magnetic Resonance Imaging With Delivery of High Concentrations of Oxygen , 2007, Journal of computer assisted tomography.

[95]  J. Gore,et al.  Intravascular susceptibility contrast mechanisms in tissues , 1994, Magnetic resonance in medicine.

[96]  K. Uğurbil,et al.  Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient‐echo and spin‐echo fMRI with suppression of blood effects , 2003, Magnetic resonance in medicine.

[97]  S. Ogawa,et al.  Biophysical and Physiological Origins of Blood Oxygenation Level-Dependent fMRI Signals , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[98]  J. R. Baker,et al.  The intravascular contribution to fmri signal change: monte carlo modeling and diffusion‐weighted studies in vivo , 1995, Magnetic resonance in medicine.

[99]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[100]  Toralf Mildner,et al.  Quantifying the intra‐ and extravascular contributions to spin‐echo fMRI at 3 T , 2004, Magnetic resonance in medicine.

[101]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[102]  A M Wyrwicz,et al.  Correction for EPI distortions using multi‐echo gradient‐echo imaging , 1999, Magnetic resonance in medicine.

[103]  A. Dale,et al.  Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal , 2010, Proceedings of the National Academy of Sciences.

[104]  Seong-Gi Kim,et al.  Mapping Iso-Orientation Columns by Contrast Agent-Enhanced Functional Magnetic Resonance Imaging: Reproducibility, Specificity, and Evaluation by Optical Imaging of Intrinsic Signal , 2006, The Journal of Neuroscience.

[105]  Laurentius Huber,et al.  High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1 , 2017, Neuron.

[106]  Vishnu B. Sridhar,et al.  Cell type specificity of neurovascular coupling in cerebral cortex , 2016, eLife.

[107]  Anders M. Dale,et al.  Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation , 2007, NeuroImage.

[108]  Seong-Gi Kim,et al.  Evolution of the Dynamic Changes in Functional Cerebral Oxidative Metabolism from Tissue Mitochondria to Blood Oxygen , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[109]  SoHyun Han,et al.  Gradient‐echo and spin‐echo blood oxygenation level–dependent functional MRI at ultrahigh fields of 9.4 and 15.2 Tesla , 2018, Magnetic resonance in medicine.

[110]  Dvir Yelin,et al.  Measuring blood oxygen saturation along a capillary vessel in human. , 2017, Biomedical optics express.

[111]  David Attwell,et al.  Imaging pericytes and capillary diameter in brain slices and isolated retinae , 2014, Nature Protocols.

[112]  Terrence J. Sejnowski,et al.  Brain-state dependent astrocytic Ca2+ signals are coupled to both positive and negative BOLD-fMRI signals , 2018, Proceedings of the National Academy of Sciences.

[113]  Anna Devor,et al.  Quantifying the Microvascular Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe , 2015, The Journal of Neuroscience.

[114]  N. Ramsey,et al.  Cortical Depth-Dependent Temporal Dynamics of the BOLD Response in the Human Brain , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[115]  Kamil Ugurbil,et al.  Functional magnetic resonance imaging using RASER , 2011, NeuroImage.

[116]  Xiaoping Hu,et al.  Advances in high-field magnetic resonance imaging. , 2004, Annual review of biomedical engineering.

[117]  T. L. Davis,et al.  Calibrated functional MRI: mapping the dynamics of oxidative metabolism. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[118]  R. S. Hinks,et al.  Time course EPI of human brain function during task activation , 1992, Magnetic resonance in medicine.

[119]  Dae-Shik Kim,et al.  Localized cerebral blood flow response at submillimeter columnar resolution , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Dae-Shik Kim,et al.  High-resolution mapping of iso-orientation columns by fMRI , 2000, Nature Neuroscience.

[121]  Tao Jin,et al.  Source of nonlinearity in echo‐time‐dependent BOLD fMRI , 2006, Magnetic resonance in medicine.

[122]  D. Kleinfeld,et al.  Two-Photon Microscopy as a Tool to Study Blood Flow and Neurovascular Coupling in the Rodent Brain , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[123]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[124]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[125]  P. Bandettini,et al.  Single‐shot half k‐space high‐resolution gradient‐recalled EPI for fMRI at 3 tesla , 1998, Magnetic resonance in medicine.

[126]  M T Madsen,et al.  A simplified formulation of the gamma variate function , 1992 .

[127]  Wen-Ming Luh,et al.  Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI , 2012, NeuroImage.