The Development of Discontinuous Galerkin Methods

In this paper, we present an overview of the evolution of the discontinuous Galerkin methods since their introduction in 1973 by Reed and Hill, in the framework of neutron transport, until their most recent developments. We show how these methods made their way into the main stream of computational fluid dynamics and how they are quickly finding use in a wide variety of applications. We review the theoretical and algorithmic aspects of these methods as well as their applications to equations including nonlinear conservation laws, the compressible Navier-Stokes equations, and Hamilton-Jacobi-like equations.

[1]  Dirk Schwanenberg,et al.  A Discontinuous Galerkin Method for the Shallow Water Equations with Source Terms , 2000 .

[2]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[3]  D. Estep A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .

[4]  C. Dawson Godunov-mixed methods for advection-diffusion equations in multidimensions , 1993 .

[5]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[6]  D. Halt,et al.  A compact higher order Euler solver for unstructured grids with curved boundaries , 1992 .

[7]  Yvon Maday,et al.  Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries , 1990 .

[8]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[9]  Endre Süli,et al.  Hp-DGFEM for Partial Di erential Equations with Nonegative Characteristic Form , 1999 .

[10]  Joseph E. Flaherty,et al.  Grid generation and adaptive algorithms , 1999 .

[11]  Q. Lin,et al.  OPTIMAL AND SUPERCONVERGENCE ESTIMATES OF THE FINITE ELEMENT METHOD FOR A SCALAR HYPERBOLIC EQUATION , 1994 .

[12]  Endre Süli,et al.  Finite element methods for hyperbolic problems: a posteriori error analysis and adaptivity , 1996 .

[13]  Claes Johnson Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations , 1988 .

[14]  Qun Lin Full Convergence for Hyperbolic Finite Elements , 2000 .

[15]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[16]  Robert C. Armstrong,et al.  Finite element method for viscoelastic flows based on the discrete adaptive viscoelastic stress splitting and the discontinuous Galerkin method : DAVSS-G/DG , 1999 .

[17]  Joseph E. Flaherty,et al.  High-Order Finite Element Methods for Singularly Perturbed Elliptic and Parabolic Problems , 1995, SIAM J. Appl. Math..

[18]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[19]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[20]  G. W. Hawkins Simulation of Granular Flow , 1983 .

[21]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[22]  Joseph E. Flaherty,et al.  Software for the parallel adaptive solution of conservation laws by discontinous Galerkin methods. , 2000 .

[23]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems V: long-time integration , 1995 .

[24]  Thomas J. R. Hughes,et al.  A comparison of discontinuous and continuous Galerkin methods bases on error estimates, conservation, robustness and efficiency , 2000 .

[25]  D. Halt,et al.  A compact higher order characteristic-based Euler solver for unstructured grids , 1991 .

[26]  Joseph E. Flaherty,et al.  Parallel adaptive mesh refinement and redistribution on distributed memory computers , 1994 .

[27]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[28]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[29]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[30]  Gerard R. Richter,et al.  An explicit finite element method for the wave equation , 1994 .

[31]  Chi-Wang Shu,et al.  On a cell entropy inequality for discontinuous Galerkin methods , 1994 .

[32]  Boleslaw K. Szymanski,et al.  Adaptive Local Refinement with Octree Load Balancing for the Parallel Solution of Three-Dimensional Conservation Laws , 1997, J. Parallel Distributed Comput..

[33]  Kenneth Eriksson,et al.  Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .

[34]  Bernardo Cockburn An introduction to the Discontinuous Galerkin method for convection-dominated problems , 1998 .

[35]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[36]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[37]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[38]  Roland W. Freund,et al.  Using Krylov-Subspace Iterations in Discontinuous Galerkin Methods for Nonlinear Reaction-Diffusion Systems , 2000 .

[39]  Paul Castillo,et al.  An Optimal Estimate for the Local Discontinuous Galerkin Method , 2000 .

[40]  F. L. Carranza,et al.  An Adaptive Discontinuous Galerkin Model for Coupled Viscoplastic Crack Growth and Chemical Transport , 2000 .

[41]  S. Rebay,et al.  GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .

[42]  J. M. Picone,et al.  Evolution of the Orszag-Tang vortex system in a compressible medium. I: Initial average subsonic flow , 1989 .

[43]  T. Warburton Application of the Discontinuous Galerkin Method to Maxwell’s Equations Using Unstructured Polymorphic hp-Finite Elements , 2000 .

[44]  G. Chavent Mathematical models and finite elements for reservoir simulation , 1986 .

[45]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[46]  M. C. Delfour,et al.  Discontinuous finite element methods for the approximation of optimal control problems governed by hereditary differential systems , 1978 .

[47]  Jacques Baranger,et al.  Finite element approximation of viscoelastic fluid flow: Existence of approximate solutions and error bounds , 1992 .

[48]  J. Baranger,et al.  Numerical analysis of a FEM for a transient viscoelastic flow , 1995 .

[49]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[50]  J. Hopcroft,et al.  Modeling, mesh generation, and adaptive numerical methods for partial differential equations , 1995 .

[51]  J. Tinsley Oden,et al.  A Conservative DGM for Convection-Diffusion and Navier-Stokes Problems , 2000 .

[52]  B. Hulme Discrete Galerkin and related one-step methods for ordinary differential equations , 1972 .

[53]  Manuel D. Salas,et al.  Barriers and Challenges in Computational Fluid Dynamics , 1998 .

[54]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[55]  S. Allmaras,et al.  A second order flux split scheme for the unsteady 2-D Euler equations on arbitrary meshes , 1987 .

[56]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[57]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[58]  Bernardo Cockburn,et al.  Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode at 300 K , 1995, Journal of Computational Electronics.

[59]  Richard S. Falk,et al.  Analysis of Finite Element Methods for Linear Hyperbolic Problems , 2000 .

[60]  J. D. Teresco,et al.  Parallel structures and dynamic load balancing for adaptive finite element computation , 1998 .

[61]  M. Y. Hussaini,et al.  Discontinuous Spectral Element Approximation of Maxwell’s Equations , 2000 .

[62]  J. Tinsley Oden,et al.  A parallel hp -adaptive discontinuous Galerkin method for hyperbolic conservation laws , 1996 .

[63]  Bernardo Cockburn,et al.  Error estimates for finite element methods for scalar conservation laws , 1996 .

[64]  Guy Chavent,et al.  The local projection P 0 − P 1 -discontinuous-Galerkin finite element method for scalar conservation laws , 2009 .

[65]  P. Roe,et al.  Space-Time Methods for Hyperbolic Conservation Laws , 1998 .

[66]  Clint Dawson,et al.  Analysis of an Upwind-Mixed Finite Element Method for Nonlinear contaminant Transport Equations , 1998 .

[67]  Joseph E. Flaherty,et al.  Parallel Partitioning Strategies for the Adaptive Solution of Conservation Laws , 1995 .

[68]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[69]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[70]  PAUL HOUSTON,et al.  Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..

[71]  Endre Süli,et al.  Post-Processing of Galerkin Methods for Hyperbolic Problems , 2000 .

[72]  Jim E. Morel,et al.  Discontinuous Galerkin for Hyperbolic Systems with Stiff Relaxation , 2000 .

[73]  George Em Karniadakis,et al.  A Discontinuous Galerkin Method for the Viscous MHD Equations , 1999 .

[74]  D. Estep,et al.  Global error control for the continuous Galerkin finite element method for ordinary differential equations , 1994 .

[75]  R. K. Agarwal,et al.  Compact higher order characteristic-based Euler solver for unstructured grids , 1992 .

[76]  B. Hulme One-step piecewise polynomial Galerkin methods for initial value problems , 1972 .

[77]  J. Tinsley Oden,et al.  hp-version discontinuous Galerkin methods for hyperbolic conservation laws: A parallel adaptive strategy , 1995 .

[78]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[79]  J. Baranger,et al.  Galerkin discontinuous approximation of the transport equation and viscoelastic fluid flow on quadrilaterals , 1998 .

[80]  Robert B. Lowrie,et al.  Compact higher-order numerical methods for hyperbolic conservation laws. , 1996 .

[81]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[82]  Pierre Jamet,et al.  Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain , 1977 .

[83]  H. van der Ven,et al.  Accuracy, resolution, and computational complexity of a discontinuous Galerkin finite element method , 2000 .

[84]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[85]  Jim E. Morel,et al.  Discontinuous Galerkin for Stiff Hyperbolic Systems , 1999 .

[86]  Ioannis Gregorios Giannakouros Spectral element/flux-corrected methods for unsteady compressible viscous flows , 1994 .

[87]  Bernardo Cockburn,et al.  Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation , 1995, VLSI Design.

[88]  J. T. Oden,et al.  A posteriori error estimation of finite element approximations in fluid mechanics , 1990 .

[89]  Richard S. Falk,et al.  Explicit Finite Element Methods for Linear Hyperbolic Systems , 2000 .

[90]  Timothy J. Barth,et al.  High-order methods for computational physics , 1999 .

[91]  Monika Wierse,et al.  A new theoretically motivated higher order upwind scheme on unstructured grids of simplices , 1997, Adv. Comput. Math..

[92]  David A. H. Jacobs,et al.  The State of the Art in Numerical Analysis. , 1978 .

[93]  G. Richter An Optimal-Order Error Estimate for the Discontinuous Galerkin Method , 1988 .

[94]  M. Fortin,et al.  A new approach for the FEM simulation of viscoelastic flows , 1989 .

[95]  Kenneth G. Powell,et al.  AN APPROXIMATE RIEMANN SOLVER FOR MAGNETOHYDRODYNAMICS (That Works in More than One Dimension) , 1994 .

[96]  Philip L. Roe,et al.  A space-time discontinuous galerkin method for the time-accurate numerical solution of hyperbolic conservation laws , 1995 .

[97]  Qun Lin,et al.  CONVERGENCE OF THE DISCONTINUOUS GALERKIN METHOD FOR A SCALAR HYPERBOLIC EQUATION , 1993 .

[98]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[99]  A. I. Shestakov,et al.  3D unstructured mesh ALE hydrodynamics with the upwind discontinuous galerkin method , 2000 .

[100]  J. Oden,et al.  hp-Version discontinuous Galerkin methods for hyperbolic conservation laws , 1996 .

[101]  Gerard R. Richter,et al.  The discontinuous Galerkin method with diffusion , 1992 .

[102]  Antonio Ruberti Distributed Parameter Systems: Modelling and Identification , 1978 .

[103]  P. Bar-Yoseph,et al.  Space-time discontinuous finite element approximations for multi-dimensional nonlinear hyperbolic systems , 1989 .

[104]  Boleslaw K. Szymanski,et al.  Distributed Octree Data Structures and Local Refinement Method for the Parallel Solution of Three-Dimensional Conservation Laws , 1999 .

[105]  Richard S. Falk,et al.  Explicit Finite Element Methods for Symmetric Hyperbolic Equations , 1999 .

[106]  Harold L. Atkins Steps Toward a Robust High-Order Simulation Tool for Aerospace Applications , 2000 .

[107]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[108]  Harold L. Atkins,et al.  QUADRATURE-FREE IMPLEMENTATION OF DISCONTINUOUS GALERKIN METHOD FOR HYPERBOLIC EQUATIONS , 1996 .

[109]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[110]  Jacques Baranger,et al.  Existence of approximate solutions and error bounds for viscoelastic fluid flow: Characteristics method , 1997 .

[111]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[112]  George Em Karniadakis,et al.  A discontinuous Galerkin method for the Navier-Stokes equations , 1999 .

[113]  J. T. Oden,et al.  Discontinuous finite-element approximations for the analysis of shock waves in nonlinearly elastic materials , 1975 .

[114]  D. Tortorelli,et al.  A Space-Time Discontinuous Galerkin Method for Elastodynamic Analysis , 2000 .

[115]  C. Schwab hp-FEM for Fluid Flow Simulation , 1999 .

[116]  Claes Johnson,et al.  Error estimates and automatic time step control for nonlinear parabolic problems, I , 1987 .

[117]  Ivo Babuška,et al.  On the Stability of the Discontinuous Galerkin Method for the Heat Equation , 1997 .

[118]  E Rivoalen,et al.  Numerical Simulation of Axisymmetric Viscous Flows by Means of a Particle Method , 1999 .

[119]  Bruno Després Discontinuous Galerkin Method for the Numerical Solution of Euler Equations in Axisymmetric Geometry , 2000 .

[120]  Clint N. Dawson,et al.  High resolution upwind‐mixed finite element methods for advection‐diffusion equations with variable time‐stepping , 1995 .

[121]  Bernardo Cockburn,et al.  The Utility of Modeling and Simulation in Determining Transport Performance Properties of Semiconductors , 2000 .

[122]  J. Flaherty,et al.  Parallel, adaptive finite element methods for conservation laws , 1994 .

[123]  Wilco M.H. Verbeeten,et al.  Successes and Failures of Discontinuous Galerkin Methods in Viscoelastic Fluid Analysis , 2000 .

[124]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[125]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[126]  C. Dawson Godunov-mixed methods for advective flow problems in one space dimension , 1991 .

[127]  Bernardo Cockburn,et al.  The P(1-) RKDG Method for Two-Dimensional Euler Equations of Gas Dynamics , 1991 .

[128]  George Em Karniadakis,et al.  Spectral/hp Methods for Viscous Compressible Flows on Unstructured 2D Meshes , 1998 .

[129]  William W. Hager,et al.  Discontinuous Galerkin methods for ordinary differential equations , 1981 .

[130]  Thomas J. R. Hughes,et al.  Space-time finite element methods for second-order hyperbolic equations , 1990 .

[131]  B. Rivière,et al.  A Discontinuous Galerkin Method Applied to Nonlinear Parabolic Equations , 2000 .

[132]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[133]  J. T. Oden,et al.  A theory of discontinuous finite element galerkin approximations of shock waves in nonlinear elastic solids part 2: Accuracy and convergence , 1976 .

[134]  J. T. Oden,et al.  A theory of discontinuous finite element galerkin approximations of shock waves in nonlinear elastic solids part 1: Variational theory , 1976 .

[135]  Steven R. Allmaras,et al.  A coupled euler/navier-stokes algorithm for 2-D unsteady transonic shock/boundary-layer interaction , 1989 .

[136]  J. Baranger,et al.  Une norme « naturelle » pour la méthode des caractéristiques en éléments finis discontinus : cas 1-D , 1996 .

[137]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[138]  Chi-Wang Shu,et al.  The Effect of the Least Square Procedure for Discontinuous Galerkin Methods for Hamilton-Jacobi Equations , 2000 .

[139]  Endre Süli,et al.  A Posteriori Error Analysis And Adaptivity For Finite Element Approximations Of Hyperbolic Problems , 1997 .

[140]  Jérôme Jaffré,et al.  CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS , 1995 .

[141]  Karen Dragon Devine,et al.  Parallel adaptive hp -refinement techniques for conservation laws , 1996 .

[142]  Todd E. Peterson,et al.  A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation , 1991 .

[143]  G. Chavent,et al.  A finite-element method for the 1-D water flooding problem with gravity , 1982 .

[144]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[145]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[146]  Clint Dawson,et al.  The Local Discontinuous Galerkin Method for Contaminant Transport Problems , 2000 .

[147]  M. Shephard,et al.  Load balancing for the parallel adaptive solution of partial differential equations , 1994 .

[148]  J. E. Flaherty,et al.  A massively parallel adaptive finite element method with dynamic load balancing , 1993, Supercomputing '93.

[149]  Marie-Claude Heuzey,et al.  Ten Years Using Discontinuous Galerkin Methods for Polymer Processing Problems , 2000 .

[150]  Francesco Bassi,et al.  A High Order Discontinuous Galerkin Method for Compressible Turbulent Flows , 2000 .

[151]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[152]  Bernardo Cockburn A Simple Introduction to Error Estimation for Nonlinear Hyperbolic Conservation Laws , 1999 .

[153]  John Greenstadt An Abridged History of Cell Discretization , 2000 .

[154]  David Elata,et al.  An efficient L2 Galerkin finite element method for multi-dimensional non-linear hyperbolic systems , 1990 .

[155]  Joseph E. Flaherty,et al.  A hierarchical partition model for adaptive finite element computation , 2000 .