Groups generated by 3-state automata over a 2-letter alphabet, I

This is the second in a series of papers presenting results on the classification of groups generated by 3-state automata over a 2-letter alphabet. Among the examples treated here, one can find automata generating the free product of 3 cyclic groups of order 2, a virtually free abelian group of rank 3, a solvable group of derived length 3, some virtually torsion-free weakly branch groups, and other interesting self-similar groups.

[1]  Yair Glasner,et al.  Automata and Square Complexes , 2003 .

[2]  F. Greenleaf,et al.  Invariant means on topological groups and their applications , 1969 .

[3]  N. Boston Reducing the Fontaine-Mazur Conjecture to Group Theory , 2005 .

[4]  On Sushchansky p-groups , 2006, math/0612200.

[5]  A. Erschler Boundary behavior for groups of subexponential growth , 2004 .

[6]  Laurent Bartholdi,et al.  Amenability via random walks , 2005 .

[7]  Yaroslav Vorobets,et al.  On a series of finite automata defining free transformation groups , 2006, math/0604328.

[8]  Volodymyr Nekrashevych,et al.  Self-Similar Groups , 2005, 2304.11232.

[9]  R. I. Grigorchuk Branch groups , 2005, math/0510294.

[10]  L. Bartholdi,et al.  Some solvable automaton groups , 2006, math/0603032.

[11]  Andrzej Żuk,et al.  The Lamplighter Group as a Group Generated by a 2-state Automaton, and its Spectrum , 2001 .

[12]  S. Ferry,et al.  Novikov Conjectures, Index Theorems and Rigidity: A history and survey of the Novikov conjecture , 1995 .

[13]  Narain Gupta,et al.  On the Burnside problem for periodic groups , 1983 .

[14]  Balint Virag,et al.  Dimension and randomness in groups acting on rooted trees , 2004 .

[15]  Laurent Bartholdi,et al.  On the Spectrum of Hecke Type Operators related to some Fractal Groups , 1999 .

[16]  Laurent Bartholdi,et al.  Thurston equivalence of topological polynomials , 2005, math/0510082.

[17]  John Wilson,et al.  On exponential growth and uniformly exponential growth for groups , 2004 .

[18]  R. Kravchenko,et al.  Groups generated by 3-state automata over a 2-letter alphabet. II , 2009 .

[19]  J. Neumann Zur allgemeinen Theorie des Masses , 1929 .

[20]  K. Pilgrim Dessins d'enfants and Hubbard trees , 1999, math/9905170.

[21]  S. Sidki,et al.  Groups: Automorphisms of the binary tree: state-closed subgroups and dynamics of 1/2-endomorphisms , 2004 .

[22]  Zoran Sunic,et al.  Classification of groups generated by 3-state automata over a 2-letter alphabet , 2008, 0803.3555.

[23]  Said Sidki,et al.  Finite Automata of Polynomial Growth do Not Generate A Free Group , 2004 .

[24]  Thomas Schick,et al.  On a question of Atiyah , 2000 .

[25]  M. Vorobets,et al.  On a free group of transformations defined by an automaton , 2006, math/0601231.

[26]  P. Stockmeyer Variations on the Four-Post Tower of Hanoi Puzzle , 1994 .

[27]  R. Grigorchuk,et al.  Bernside's problem on periodic groups , 1980 .

[28]  Rostislav I. Grigorchuk,et al.  On a Torsion-Free Weakly Branch Group Defined by a Three State Automaton , 2002, Int. J. Algebra Comput..