Fast Iterative Solvers for PDE-Constrained Optimization Problems

In this thesis, we develop preconditioned iterative methods for the solution of matrix systems arising from PDE-constrained optimization problems. In order to do this, we exploit saddle point theory, as this is the form of the matrix systems we wish to solve. We utilize well-known results on saddle point systems to motivate preconditioners based on effective approximations of the (1,1)-block and Schur complement of the matrices involved. These preconditioners are used in conjunction with suitable iterative solvers, which include MINRES, non-standard Conjugate Gradients, GMRES and BiCG. The solvers we use are selected based on the particular problem and preconditioning strategy employed. We consider the numerical solution of a range of PDE-constrained optimization problems, namely the distributed control, Neumann boundary control and subdomain control of Poisson's equation, convection-diffusion control, Stokes and Navier-Stokes control, the optimal control of the heat equation, and the optimal control of reaction-diffusion problems arising in chemical processes. Each of these problems has a special structure which we make use of when developing our preconditioners, and specific techniques and approximations are required for each problem. In each case, we motivate and derive our preconditioners, obtain eigenvalue bounds for the preconditioners where relevant, and demonstrate the effectiveness of our strategies through numerical experiments. The goal throughout this work is for our iterative solvers to be feasible and reliable, but also robust with respect to the parameters involved in the problems we consider.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..

[3]  Andrew J. Wathen,et al.  Preconditioning Iterative Methods for the Optimal Control of the Stokes Equations , 2011, SIAM J. Sci. Comput..

[4]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[5]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[6]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[7]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[8]  Karl Kunisch,et al.  A Multigrid Scheme for Elliptic Constrained Optimal Control Problems , 2005, Comput. Optim. Appl..

[9]  Valeria Simoncini,et al.  Krylov Subspace Methods for Saddle Point Problems with Indefinite Preconditioning , 2002, SIAM J. Matrix Anal. Appl..

[10]  Stefan Takacs,et al.  Convergence analysis of multigrid methods with collective point smoothers for optimal control problems , 2011, Comput. Vis. Sci..

[11]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[12]  S. Arridge Optical tomography in medical imaging , 1999 .

[13]  Martin Stoll,et al.  All-at-once preconditioning in PDE-constrained optimization , 2010, Kybernetika.

[14]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[15]  John W. Pearson,et al.  A radial basis function method for solving PDE-constrained optimization problems , 2013, Numerical Algorithms.

[16]  Roland Griesse,et al.  Parametric Sensitivity Analysis in Optimal Control of a Reaction Diffusion System. I. Solution Differentiability , 2004 .

[17]  A. Ramage A multigrid preconditioner for stabilised discretisations of advection-diffusion problems , 1999 .

[18]  Philip K. Maini,et al.  An efficient and robust numerical algorithm for estimating parameters in Turing systems , 2010, J. Comput. Phys..

[19]  Martin Stoll,et al.  Preconditioning for partial differential equation constrained optimization with control constraints , 2011, Numer. Linear Algebra Appl..

[20]  E. Haber,et al.  Preconditioned all-at-once methods for large, sparse parameter estimation problems , 2001 .

[21]  René Pinnau,et al.  Second-Order Approach to Optimal Semiconductor Design , 2007 .

[22]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[23]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[24]  Walter Zulehner,et al.  Nonstandard Norms and Robust Estimates for Saddle Point Problems , 2011, SIAM J. Matrix Anal. Appl..

[25]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[26]  Eldad Haber,et al.  A parallel method for large scale time domain electromagnetic inverse problems , 2008 .

[27]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[28]  Roland Griesse,et al.  STATE-CONSTRAINED OPTIMAL CONTROL OF THE THREE-DIMENSIONAL STATIONARY NAVIER-STOKES , 2008 .

[29]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[30]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[31]  John W. Pearson On the role of commutator arguments in the development of parameter-robust preconditioners for Stokes control problems , 2013 .

[32]  Martin Stoll,et al.  Combination Preconditioning and the Bramble-Pasciak+ Preconditioner , 2008, SIAM J. Matrix Anal. Appl..

[33]  J. Scott,et al.  HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D , 2010 .

[34]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[35]  T. Rees,et al.  Block‐triangular preconditioners for PDE‐constrained optimization , 2010, Numer. Linear Algebra Appl..

[36]  A. Wathen Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .

[37]  A. Wathen,et al.  All-at-Once Solution if Time-Dependent PDE-Constrained Optimisation Problems , 2010 .

[38]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[39]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[40]  H. Engl,et al.  Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates , 2005 .

[41]  Kazufumi Ito,et al.  Semi-smooth Newton methods for state-constrained optimal control problems , 2003, Syst. Control. Lett..

[42]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[43]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[44]  Matthias Heinkenschloss,et al.  Local Error Estimates for SUPG Solutions of Advection-Dominated Elliptic Linear-Quadratic Optimal Control Problems , 2010, SIAM J. Numer. Anal..

[45]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[46]  Tomás Roubícek,et al.  Optimal control of Navier-Stokes equations by Oseen approximation , 2007, Comput. Math. Appl..

[47]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[48]  Michele Benzi,et al.  A preconditioning technique for a class of PDE-constrained optimization problems , 2011, Adv. Comput. Math..

[49]  Jean-Luc Guermond,et al.  A correction technique for the dispersive effects of mass lumping for transport problems , 2013 .

[50]  Stephen J. Wright,et al.  Data assimilation in weather forecasting: a case study in PDE-constrained optimization , 2009 .

[51]  Martin Stoll,et al.  Robust Iterative Solution of a Class of Time-Dependent Optimal Control Problems , 2012 .

[52]  Carlos E. Orozco,et al.  Massively parallel aerodynamic shape optimization , 1992 .

[53]  Stefan Volkwein,et al.  A Primal-Dual Active Set Strategy for Optimal Boundary Control of a Nonlinear Reaction-Diffusion System , 2005, SIAM J. Control. Optim..

[54]  A. R. Borges,et al.  A quantitative algorithm for parameter estimation in magnetic induction tomography , 2004 .

[55]  Ilse C. F. Ipsen A Note on Preconditioning Nonsymmetric Matrices , 2001, SIAM J. Sci. Comput..

[56]  Owe Axelsson,et al.  Eigenvalue estimates for preconditioned saddle point matrices , 2006, Numer. Linear Algebra Appl..

[57]  Joachim Schöberl,et al.  Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..

[58]  Andrew J. Wathen,et al.  Optimal Solvers for PDE-Constrained Optimization , 2010, SIAM J. Sci. Comput..

[59]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[60]  Alfio Borzì,et al.  Multigrid Methods for PDE Optimization , 2009, SIAM Rev..

[61]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[62]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[63]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[64]  Roland Griesse,et al.  Parametric sensitivity analysis in optimal control of a reaction-diffusion system – part II: practical methods and examples , 2004, Optim. Methods Softw..

[65]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[66]  D. A. Flanders,et al.  Numerical Determination of Fundamental Modes , 1950 .

[67]  MICHAEL V. KLIBANOV,et al.  Numerical Solution of a Parabolic Inverse Problem in Optical Tomography Using Experimental Data , 1999, SIAM J. Appl. Math..

[68]  Martin Stoll,et al.  All-at-once solution of time-dependent Stokes control , 2013, J. Comput. Phys..

[69]  A. Quarteroni,et al.  OPTIMAL CONTROL AND SHAPE OPTIMIZATION OF AORTO-CORONARIC BYPASS ANASTOMOSES , 2003 .

[70]  Karl Kunisch,et al.  Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..

[71]  Martin Stoll,et al.  Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[72]  Ekkehard W. Sachs,et al.  Preconditioned Conjugate Gradient Method for Optimal Control Problems with Control and State Constraints , 2010, SIAM J. Matrix Anal. Appl..

[73]  Wolfgang Bangerth,et al.  Non-contact fluorescence optical tomography with scanning patterned illumination. , 2006, Optics express.

[74]  E. Haber Quasi-Newton methods for large-scale electromagnetic inverse problems , 2005 .

[75]  E. Casas Control of an elliptic problem with pointwise state constraints , 1986 .

[76]  R. Varga,et al.  Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .

[77]  V. Isakov,et al.  TOPICAL REVIEW: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets , 1999 .

[78]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[79]  Roland Becker,et al.  Optimal control of the convection-diffusion equation using stabilized finite element methods , 2007, Numerische Mathematik.

[80]  Martin Stoll,et al.  Preconditioners for state‐constrained optimal control problems with Moreau–Yosida penalty function , 2014, Numer. Linear Algebra Appl..

[81]  Veronika Pillwein Stefan Takacs Computing smoothing rates of collective point smoothers for optimal control problems using symbolic computation , 2010 .

[82]  A. Wathen,et al.  FAST ITERATIVE SOLVERS FOR CONVECTION-DIFFUSION CONTROL PROBLEMS ∗ , 2013 .

[83]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[84]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..

[85]  Fredi Tröltzsch,et al.  Optimal Control of the Stationary Navier--Stokes Equations with Mixed Control-State Constraints , 2007, SIAM J. Control. Optim..

[86]  Michael Ulbrich,et al.  Constrained optimal control of Navier-Stokes flow by semismooth Newton methods , 2003, Syst. Control. Lett..

[87]  Alfio Borzì,et al.  High-order discretization and multigrid solution of elliptic nonlinear constrained optimal control problems , 2007 .

[88]  Daniel Wachsmuth,et al.  Optimal Dirichlet Boundary Control of Stationary Navier–Stokes Equations with State Constraint , 2009 .

[89]  R. Cubeddu,et al.  Optical Tomography , 1998, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[90]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[91]  A. Wathen,et al.  Chebyshev semi-iteration in preconditioning for problems including the mass matrix. , 2008 .

[92]  Andrew J. Wathen,et al.  A new approximation of the Schur complement in preconditioners for PDE‐constrained optimization , 2012, Numer. Linear Algebra Appl..

[93]  Walter Zulehner,et al.  Analysis of iterative methods for saddle point problems: a unified approach , 2002, Math. Comput..

[94]  John W. Pearson,et al.  Preconditioned iterative methods for Navier-Stokes control problems , 2015, J. Comput. Phys..

[95]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[96]  YU. A. KUZNETSOV,et al.  Efficient iterative solvers for elliptic finite element problems on nonmatching grids , 1995 .

[97]  O. Zienkiewicz,et al.  A note on mass lumping and related processes in the finite element method , 1976 .

[98]  Steven Haker,et al.  Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..

[99]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.