Fast Iterative Solvers for PDE-Constrained Optimization Problems
暂无分享,去创建一个
[1] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[2] George Biros,et al. Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..
[3] Andrew J. Wathen,et al. Preconditioning Iterative Methods for the Optimal Control of the Stokes Equations , 2011, SIAM J. Sci. Comput..
[4] A. Wathen,et al. Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .
[5] L. Trefethen,et al. Numerical linear algebra , 1997 .
[6] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[7] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[8] Karl Kunisch,et al. A Multigrid Scheme for Elliptic Constrained Optimal Control Problems , 2005, Comput. Optim. Appl..
[9] Valeria Simoncini,et al. Krylov Subspace Methods for Saddle Point Problems with Indefinite Preconditioning , 2002, SIAM J. Matrix Anal. Appl..
[10] Stefan Takacs,et al. Convergence analysis of multigrid methods with collective point smoothers for optimal control problems , 2011, Comput. Vis. Sci..
[11] Erik Burman,et al. Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..
[12] S. Arridge. Optical tomography in medical imaging , 1999 .
[13] Martin Stoll,et al. All-at-once preconditioning in PDE-constrained optimization , 2010, Kybernetika.
[14] R. LeVeque. High-resolution conservative algorithms for advection in incompressible flow , 1996 .
[15] John W. Pearson,et al. A radial basis function method for solving PDE-constrained optimization problems , 2013, Numerical Algorithms.
[16] Roland Griesse,et al. Parametric Sensitivity Analysis in Optimal Control of a Reaction Diffusion System. I. Solution Differentiability , 2004 .
[17] A. Ramage. A multigrid preconditioner for stabilised discretisations of advection-diffusion problems , 1999 .
[18] Philip K. Maini,et al. An efficient and robust numerical algorithm for estimating parameters in Turing systems , 2010, J. Comput. Phys..
[19] Martin Stoll,et al. Preconditioning for partial differential equation constrained optimization with control constraints , 2011, Numer. Linear Algebra Appl..
[20] E. Haber,et al. Preconditioned all-at-once methods for large, sparse parameter estimation problems , 2001 .
[21] René Pinnau,et al. Second-Order Approach to Optimal Semiconductor Design , 2007 .
[22] J. Guermond. Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .
[23] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[24] Walter Zulehner,et al. Nonstandard Norms and Robust Estimates for Saddle Point Problems , 2011, SIAM J. Matrix Anal. Appl..
[25] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[26] Eldad Haber,et al. A parallel method for large scale time domain electromagnetic inverse problems , 2008 .
[27] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[28] Roland Griesse,et al. STATE-CONSTRAINED OPTIMAL CONTROL OF THE THREE-DIMENSIONAL STATIONARY NAVIER-STOKES , 2008 .
[29] Roland Becker,et al. A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .
[30] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[31] John W. Pearson. On the role of commutator arguments in the development of parameter-robust preconditioners for Stokes control problems , 2013 .
[32] Martin Stoll,et al. Combination Preconditioning and the Bramble-Pasciak+ Preconditioner , 2008, SIAM J. Matrix Anal. Appl..
[33] J. Scott,et al. HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D , 2010 .
[34] David Isaacson,et al. Electrical Impedance Tomography , 1999, SIAM Rev..
[35] T. Rees,et al. Block‐triangular preconditioners for PDE‐constrained optimization , 2010, Numer. Linear Algebra Appl..
[36] A. Wathen. Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .
[37] A. Wathen,et al. All-at-Once Solution if Time-Dependent PDE-Constrained Optimisation Problems , 2010 .
[38] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[39] J. Cahouet,et al. Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .
[40] H. Engl,et al. Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates , 2005 .
[41] Kazufumi Ito,et al. Semi-smooth Newton methods for state-constrained optimal control problems , 2003, Syst. Control. Lett..
[42] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[43] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[44] Matthias Heinkenschloss,et al. Local Error Estimates for SUPG Solutions of Advection-Dominated Elliptic Linear-Quadratic Optimal Control Problems , 2010, SIAM J. Numer. Anal..
[45] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[46] Tomás Roubícek,et al. Optimal control of Navier-Stokes equations by Oseen approximation , 2007, Comput. Math. Appl..
[47] J. Pasciak,et al. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .
[48] Michele Benzi,et al. A preconditioning technique for a class of PDE-constrained optimization problems , 2011, Adv. Comput. Math..
[49] Jean-Luc Guermond,et al. A correction technique for the dispersive effects of mass lumping for transport problems , 2013 .
[50] Stephen J. Wright,et al. Data assimilation in weather forecasting: a case study in PDE-constrained optimization , 2009 .
[51] Martin Stoll,et al. Robust Iterative Solution of a Class of Time-Dependent Optimal Control Problems , 2012 .
[52] Carlos E. Orozco,et al. Massively parallel aerodynamic shape optimization , 1992 .
[53] Stefan Volkwein,et al. A Primal-Dual Active Set Strategy for Optimal Boundary Control of a Nonlinear Reaction-Diffusion System , 2005, SIAM J. Control. Optim..
[54] A. R. Borges,et al. A quantitative algorithm for parameter estimation in magnetic induction tomography , 2004 .
[55] Ilse C. F. Ipsen. A Note on Preconditioning Nonsymmetric Matrices , 2001, SIAM J. Sci. Comput..
[56] Owe Axelsson,et al. Eigenvalue estimates for preconditioned saddle point matrices , 2006, Numer. Linear Algebra Appl..
[57] Joachim Schöberl,et al. Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..
[58] Andrew J. Wathen,et al. Optimal Solvers for PDE-Constrained Optimization , 2010, SIAM J. Sci. Comput..
[59] Howard C. Elman,et al. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.
[60] Alfio Borzì,et al. Multigrid Methods for PDE Optimization , 2009, SIAM Rev..
[61] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[62] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[63] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[64] Roland Griesse,et al. Parametric sensitivity analysis in optimal control of a reaction-diffusion system – part II: practical methods and examples , 2004, Optim. Methods Softw..
[65] D. Bertsekas. Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[66] D. A. Flanders,et al. Numerical Determination of Fundamental Modes , 1950 .
[67] MICHAEL V. KLIBANOV,et al. Numerical Solution of a Parabolic Inverse Problem in Optical Tomography Using Experimental Data , 1999, SIAM J. Appl. Math..
[68] Martin Stoll,et al. All-at-once solution of time-dependent Stokes control , 2013, J. Comput. Phys..
[69] A. Quarteroni,et al. OPTIMAL CONTROL AND SHAPE OPTIMIZATION OF AORTO-CORONARIC BYPASS ANASTOMOSES , 2003 .
[70] Karl Kunisch,et al. Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..
[71] Martin Stoll,et al. Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..
[72] Ekkehard W. Sachs,et al. Preconditioned Conjugate Gradient Method for Optimal Control Problems with Control and State Constraints , 2010, SIAM J. Matrix Anal. Appl..
[73] Wolfgang Bangerth,et al. Non-contact fluorescence optical tomography with scanning patterned illumination. , 2006, Optics express.
[74] E. Haber. Quasi-Newton methods for large-scale electromagnetic inverse problems , 2005 .
[75] E. Casas. Control of an elliptic problem with pointwise state constraints , 1986 .
[76] R. Varga,et al. Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .
[77] V. Isakov,et al. TOPICAL REVIEW: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets , 1999 .
[78] W. Bangerth,et al. deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.
[79] Roland Becker,et al. Optimal control of the convection-diffusion equation using stabilized finite element methods , 2007, Numerische Mathematik.
[80] Martin Stoll,et al. Preconditioners for state‐constrained optimal control problems with Moreau–Yosida penalty function , 2014, Numer. Linear Algebra Appl..
[81] Veronika Pillwein Stefan Takacs. Computing smoothing rates of collective point smoothers for optimal control problems using symbolic computation , 2010 .
[82] A. Wathen,et al. FAST ITERATIVE SOLVERS FOR CONVECTION-DIFFUSION CONTROL PROBLEMS ∗ , 2013 .
[83] K. Kunisch,et al. Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .
[84] George Biros,et al. Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..
[85] Fredi Tröltzsch,et al. Optimal Control of the Stationary Navier--Stokes Equations with Mixed Control-State Constraints , 2007, SIAM J. Control. Optim..
[86] Michael Ulbrich,et al. Constrained optimal control of Navier-Stokes flow by semismooth Newton methods , 2003, Syst. Control. Lett..
[87] Alfio Borzì,et al. High-order discretization and multigrid solution of elliptic nonlinear constrained optimal control problems , 2007 .
[88] Daniel Wachsmuth,et al. Optimal Dirichlet Boundary Control of Stationary Navier–Stokes Equations with State Constraint , 2009 .
[89] R. Cubeddu,et al. Optical Tomography , 1998, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).
[90] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[91] A. Wathen,et al. Chebyshev semi-iteration in preconditioning for problems including the mass matrix. , 2008 .
[92] Andrew J. Wathen,et al. A new approximation of the Schur complement in preconditioners for PDE‐constrained optimization , 2012, Numer. Linear Algebra Appl..
[93] Walter Zulehner,et al. Analysis of iterative methods for saddle point problems: a unified approach , 2002, Math. Comput..
[94] John W. Pearson,et al. Preconditioned iterative methods for Navier-Stokes control problems , 2015, J. Comput. Phys..
[95] P. Wesseling. An Introduction to Multigrid Methods , 1992 .
[96] YU. A. KUZNETSOV,et al. Efficient iterative solvers for elliptic finite element problems on nonmatching grids , 1995 .
[97] O. Zienkiewicz,et al. A note on mass lumping and related processes in the finite element method , 1976 .
[98] Steven Haker,et al. Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..
[99] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.