Outcomes from the DOE Workshop on Turbulent Flow Simulation at the Exascale

This paper summarizes the outcomes from the Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop, which was held 4-5 August 2015, and was sponsored by the U.S. Department of Energy Office of Advanced Scientific Computing Research. The workshop objective was to define and describe the challenges and opportunities that computing at the exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the U.S. Department of Energy applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought together experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.

[1]  Robert D. Moser On the validity of the continuum approximation in high Reynolds number turbulence , 2006 .

[2]  Patrick H. Worley,et al.  A fully non-linear multi-species Fokker-Planck-Landau collision operator for simulation of fusion plasma , 2016, J. Comput. Phys..

[3]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[4]  Xiaolei Yang,et al.  Large‐eddy simulation of turbulent flow past wind turbines/farms: the Virtual Wind Simulator (VWiS) , 2015 .

[5]  Jack Dongarra,et al.  Applied Mathematics Research for Exascale Computing , 2014 .

[6]  Jason Jonkman,et al.  BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint , 2015 .

[7]  Tetsuya Takemi,et al.  Large‐eddy simulation of urban boundary‐layer flows by generating turbulent inflows from mesoscale meteorological simulations , 2012 .

[8]  D. Longman,et al.  Numerical Study Comparing the Combustion and Emission Characteristics of Biodiesel to Petrodiesel , 2011 .

[9]  G. S. Patterson,et al.  Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence , 1972 .

[10]  Todd A. Oliver,et al.  Representing Model Inadequacy in Combustion Mechanisms of Laminar Flames , 2015 .

[11]  Zheng-Tong Xie,et al.  Modelling Street-Scale Flow and Dispersion in Realistic Winds—Towards Coupling with Mesoscale Meteorological Models , 2011 .

[12]  Guenter Conzelmann,et al.  Actuator Line Aerodynamics Model with Spectral Elements , 2013 .

[13]  M. Musculus,et al.  Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling , 2015 .

[14]  Jeppe Johansen,et al.  Wind turbine rotor-tower interaction using an incompressible overset grid method , 2009 .

[15]  Javier Jiménez,et al.  The autonomous cycle of near-wall turbulence , 1999, Journal of Fluid Mechanics.

[16]  Jason Jonkman,et al.  New Modularization Framework for the FAST Wind Turbine CAE Tool: Preprint , 2013 .

[17]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[18]  Elia Merzari,et al.  Large-scale simulation of nuclear reactors: Issues and perspectives , 2015 .

[19]  J. Jiménez Turbulent flows over rough walls , 2004 .

[20]  Ramanan Sankaran,et al.  Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure , 2009, Journal of Fluid Mechanics.

[21]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[22]  Robert D. Moser,et al.  Self-similarity of time-evolving plane wakes , 1998, Journal of Fluid Mechanics.

[23]  David E. Smith,et al.  Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles , 2015 .

[24]  Joseph C. Oefelein,et al.  Large eddy simulation of turbulent combustion processes in propulsion and power systems , 2006 .

[25]  Frank Jenko,et al.  Electron temperature gradient driven turbulence , 1999 .

[26]  Javier Jiménez,et al.  On the characteristics of vortex filaments in isotropic turbulence , 1998, Journal of Fluid Mechanics.

[27]  P. Fischer,et al.  Petascale algorithms for reactor hydrodynamics , 2008 .

[28]  C. Meneveau,et al.  Large eddy simulation study of fully developed wind-turbine array boundary layers , 2010 .

[29]  Arie Shoshani,et al.  Whole-volume integrated gyrokinetic simulation of plasma turbulence in realistic diverted-tokamak geometry , 2009 .

[30]  Guilhem Lacaze,et al.  Uncertainty quantification in LES of a turbulent bluff-body stabilized flame , 2015 .

[31]  P. Durbin,et al.  Statistical Theory and Modeling for Turbulent Flows , 2001 .

[32]  M S Day,et al.  Numerical simulation of laminar reacting flows with complex chemistry , 2000 .

[33]  Ray W. Grout,et al.  A direct numerical simulation study of turbulence and flame structure in transverse jets analysed in jet-trajectory based coordinates , 2012, Journal of Fluid Mechanics.

[34]  A. Bourlioux,et al.  High-order multi-implicit spectral deferred correction methods for problems of reactive flow , 2003 .

[35]  Scott Klasky,et al.  Terascale direct numerical simulations of turbulent combustion using S3D , 2008 .

[36]  Ray W. Grout,et al.  Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop: August 4-5, 2015, Washington, D.C. , 2017 .

[37]  Jens Nørkær Sørensen,et al.  Actuator Line Simulation of Wake of Wind Turbine Operating in Turbulent Inflow , 2007 .

[38]  Qi Wang,et al.  BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework , 2017 .

[39]  Peter E. Hamlington,et al.  Autonomic subgrid-scale closure for large eddy simulations , 2015 .

[40]  Todd A. Oliver,et al.  Bayesian analysis of syngas chemistry models , 2013 .

[41]  Stefano Leonardi,et al.  A large-eddy simulation of wind-plant aerodynamics , 2012 .

[42]  Robert Hager,et al.  A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma , 2016, J. Comput. Phys..

[43]  Dimitri J. Mavriplis,et al.  Wind Farm simulations using a Full Rotor Model for Wind Turbines , 2014 .

[44]  梶島 岳夫 乱流の数値シミュレーション = Numerical simulation of turbulent flows , 2003 .

[45]  D. Muñoz‐Esparza,et al.  Bridging the Transition from Mesoscale to Microscale Turbulence in Numerical Weather Prediction Models , 2014, Boundary-Layer Meteorology.

[46]  Pablo M. Carrica,et al.  Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence , 2015 .

[47]  Jens Nørkær Sørensen,et al.  Numerical simulations of wake interaction between two wind turbines at various inflow conditions , 2011 .

[48]  Matthew F. Barone,et al.  A2e High Fidelity Modeling: Strategic Planning Meetings , 2015 .

[49]  F. Porté-Agel,et al.  Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer , 2011 .

[50]  A. S. Almgren,et al.  A deferred correction coupling strategy for low Mach number flow with complex chemistry , 2012 .

[51]  Nagiza F. Samatova,et al.  Compressed ion temperature gradient turbulence in diverted tokamak edge , 2009 .

[52]  Wi Gustafson,et al.  LES ARM Symbiotic Simulation and Observation (LASSO) Implementation Strategy , 2015 .

[53]  Evgueni I. Kassianov,et al.  The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation , 2010 .

[54]  Yuwei Li,et al.  Dynamic overset CFD simulations of wind turbine aerodynamics , 2012 .