Chaos synchronization and parameter identification of a finance chaotic system with unknown parameters, a linear feedback controller

Abstract In this research study, an adaptive linear feedback controller is presented for controlling the behavior of a financial chaotic system and identical/non-identical synchronization with unknown system parameters. An adaptive linear feedback controller is introduced based on the Lyapunov stability theorem, which is added to the nonlinear chaotic systems to achieve synchronization. Furthermore, the disparity amount of system parameters is estimated simultaneously. Identical and non-identical synchronizations are followed by some numerical simulations to verify the validity of the proposed method. The results show the effectiveness of the theoretical discussions.

[1]  Manfeng Hu,et al.  Adaptive feedback controller for projective synchronization , 2008 .

[2]  Guo-Ping Jiang,et al.  A New Criterion for Chaos Synchronization Using Linear State Feedback Control , 2003, Int. J. Bifurc. Chaos.

[3]  E. M. Shahverdiev,et al.  Lag synchronization in time-delayed systems , 2002 .

[4]  Jianfeng Wang,et al.  Globally Exponentially Attractive Set and Synchronization of a Class of Chaotic Finance System , 2009, ISNN.

[5]  Leonid M. Fridman,et al.  Delayed sliding mode control , 2016, Autom..

[6]  R. Tang,et al.  An extended active control for chaos synchronization , 2009 .

[7]  H. Agiza,et al.  Synchronization of Rossler and Chen chaotic dynamical systems using active control , 2001, Physics Letters A.

[8]  Junhai Ma,et al.  Chaos and Hopf bifurcation of a finance system , 2009 .

[9]  Junwei Sun,et al.  Transmission projective synchronization of multi-systems with non-delayed and delayed coupling via impulsive control. , 2012, Chaos.

[10]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[11]  Suochun Zhang,et al.  Adaptive backstepping synchronization of uncertain chaotic system , 2004 .

[12]  张超,et al.  Synchronization between two different chaotic systems with nonlinear feedback control , 2007 .

[13]  Florian Dörfler,et al.  Synchronization in complex networks of phase oscillators: A survey , 2014, Autom..

[14]  Andrew Chi Sing Leung,et al.  Adaptive synchronization of identical chaotic and hyper-chaotic systems with uncertain parameters , 2010 .

[15]  Igor V. Evstigneev,et al.  Dynamic interaction models of economic equilibrium , 2009 .

[16]  Xingyuan Wang,et al.  CONTROLLING LIU SYSTEM WITH DIFFERENT METHODS , 2009 .

[17]  Chi-Chuan Hwang,et al.  A linear continuous feedback control of Chua's circuit , 1997 .

[18]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[19]  Sahjendra N. Singh,et al.  Adaptive Control of Chaos in Lorenz System , 1997 .

[20]  Heng-Hui Chen,et al.  Chaos synchronization between two different chaotic systems via nonlinear feedback control , 2009 .

[21]  Qing-Long Han,et al.  Master-slave synchronization criteria for chaotic hindmarsh-rose neurons using linear feedback control , 2016, Complex..

[22]  Alberto Tesi,et al.  Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems , 1992, Autom..

[23]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[24]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[25]  Hua Wang,et al.  Finite time chaos control for a class of chaotic systems with input nonlinearities via TSM scheme , 2012 .

[26]  Joaquín Alvarez,et al.  Robust synchronization of nonlinear SISO systems using sliding mode control , 2006 .

[27]  Junwei Sun,et al.  Adaptive anti-synchronization of chaotic complex systems and chaotic real systems with unknown parameters , 2016 .

[28]  Hamed Tirandaz,et al.  Adaptive synchronization and anti-synchronization of TSUCS and Lü unified chaotic systems with unknown parameters , 2017 .

[29]  Matthew A. Waller,et al.  Making Sense Out of Chaos: Why Theory is Relevant to Supply Chain Research , 2011 .

[30]  Guanrong Chen,et al.  The compound structure of a new chaotic attractor , 2002 .