Contribuições ao estudo matematico de sistemas inteligentes

Neste trabalho, apresenta-se uma fundamentacao para o estudo matematico de sistemas inteligentes. A relacao entre semiotica e inteligencia e investigada, e utilizada para a geracao de estruturas formais de representacao do conhecimento. Estas estruturas sao utilizadas entao para compor os modulos que integram um sistema inteligente. Inicialmente, apresenta-se uma analise da relacao entre semiotica e sistemas inteligentes. Em seguida, inicia-se a fundamentacao formal, com a definicao matematica de objeto e de redes de objetos. Apesar destas definicoes serem apresentadas visando seu uso na elaboracao das estruturas de representacao do conhecimento, elas contem caracteristicas que permitem denota-las como fundamentos de uma teoria geral dos objetos que engloba, alem disso, sistemas orientados a objetos e programacao orientada a objetos. As definicoes formais de objetos e redes de objetos sao utilizadas entao para a definicao de estruturas de representacao e processamento do conhecimento, para os diferentes tipos de conhecimento identificados a partir da analise entre semiotica e sistemas inteligentes. Por fim, e analisada uma aplicacao-exemplo de um sistema inteligente, construido a partir das ideias anteriormente expostas. Essa aplicacao considera o problema do controle de um veiculo autonomo Abstract

[1]  S. Chung,et al.  Limited lookahead policies in supervisory control of discrete event systems , 1992 .

[2]  Kurt Jensen How to Find Invariants for Coloured Petri Nets , 1981, MFCS.

[3]  Kurt Jensen Coloured Petri nets: A high level language for system design and analysis , 1989, Applications and Theory of Petri Nets.

[4]  D.E. Goldberg,et al.  Classifier Systems and Genetic Algorithms , 1989, Artif. Intell..

[5]  Bart Kosko,et al.  Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence , 1991 .

[6]  Ryszard S. Michalski,et al.  Learning strategies and automated knowledge acquisition: an overview , 1987 .

[7]  Alan Snyder,et al.  The essence of objects: concepts and terms , 1993, IEEE Software.

[8]  John R. Anderson,et al.  A Theory of the Origins of Human Knowledge , 1989, Artif. Intell..

[9]  Allen Newell,et al.  The Knowledge Level , 1989, Artif. Intell..

[10]  Kurt Lautenbach,et al.  System Modelling with High-Level Petri Nets , 1981, Theor. Comput. Sci..

[11]  Fernando A. C. Gomide,et al.  Genetic algorithms and discrete event systems: an application , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[12]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[13]  Fei-Yue Wang,et al.  A Petri-net coordination model for an intelligent mobile robot , 1991, IEEE Trans. Syst. Man Cybern..

[14]  Rüdiger Valk Self-Modifying Nets, a Natural Extension of Petri Nets , 1978, ICALP.

[15]  Ryszard S. Michalski,et al.  Machine learning: an artificial intelligence approach volume III , 1990 .

[16]  Ryszard S. Michalski,et al.  A theory and methodology of inductive learning , 1993 .

[17]  Janette Cardoso,et al.  Petri nets with uncertain markings , 1991, Applications and Theory of Petri Nets.

[18]  Donald A. Norman,et al.  Approaches to the Study of Intelligence , 1991, Artif. Intell..

[19]  Dominick Andrisani,et al.  Intelligent ϵ-optimal path prediction for vehicular travel , 1995, IEEE Trans. Syst. Man Cybern..

[20]  G. Edelman,et al.  The Mindful Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function , 1978 .

[21]  John R. Anderson,et al.  MACHINE LEARNING An Artificial Intelligence Approach , 2009 .

[22]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[23]  Ricardo Ribeiro Gudwin,et al.  Context Adaptation in Fuzzy Processing , 1998 .

[24]  Kurt Jensen,et al.  Coloured Petri Nets and the Invariant-Method , 1981, Theor. Comput. Sci..

[25]  James S. Albus,et al.  Outline for a theory of intelligence , 1991, IEEE Trans. Syst. Man Cybern..

[26]  Jacek M. Zurada,et al.  Computational Intelligence: Imitating Life , 1994 .

[27]  Witold Pedrycz,et al.  Fuzzy control and fuzzy systems , 1989 .

[28]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[29]  Benjamin Cohen,et al.  Models of Concepts , 1984, Cogn. Sci..

[30]  Ronald J. Brachman,et al.  An overview of the KL-ONE Knowledge Representation System , 1985 .

[31]  L. A. Rendell,et al.  Conceptual knowledge acquisition in search , 1987 .

[32]  Mohan M. Trivedi,et al.  Task planning and action coordination in integrated sensor-based robots , 1995, IEEE Trans. Syst. Man Cybern..

[33]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[34]  MengChu Zhou,et al.  Adaptive design of Petri net controllers for error recovery in automated manufacturing systems , 1989, IEEE Trans. Syst. Man Cybern..

[35]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Ryszard S. Michalski,et al.  The Logic of Plausible Reasoning: A Core Theory , 1989, Cogn. Sci..

[37]  Giorgio Bruno,et al.  An Environment for Object- oriented Conceptual Programming Based on PROT Nets , 1987, European Workshop on Applications and Theory of Petri Nets.

[38]  Yair Wand,et al.  A Proposal for a Formal Model of Objects , 1989, Object-Oriented Concepts, Databases, and Applications.

[39]  C. Morris,et al.  Signs, Language and Behavior , 1947 .

[40]  Paul F. M. J. Verschure,et al.  Formal minds and biological brains: AI and Edelman's extended theory of neuronal group selection , 1993, IEEE Expert.

[41]  Dean Allemang,et al.  The Computational Complexity of Abduction , 1991, Artif. Intell..

[42]  John Yen,et al.  A fuzzy logic based extension to Payton and Rosenblatt's command fusion method for mobile robot navigation , 1995, IEEE Trans. Syst. Man Cybern..

[43]  Mario Wolczko Semantics of object-oriented languages , 1988 .

[44]  Nageswara S. V. Rao,et al.  Robot navigation in unknown generalized polygonal terrains using vision sensors , 1995, IEEE Trans. Syst. Man Cybern..

[45]  Rüdiger Valk,et al.  Generalizations of Petri Nets , 1981, MFCS.

[46]  Giancarlo Mauri,et al.  OBJSA Nets: a Class of High- level Nets Having Objects as Domains , 1987, European Workshop on Applications and Theory of Petri Nets.

[47]  Hyung Suck Cho,et al.  A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning , 1995, IEEE Trans. Syst. Man Cybern..

[48]  G. Edelman Neural Darwinism: The Theory Of Neuronal Group Selection , 1989 .

[49]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[50]  Ben J. A. Kröse,et al.  Distributed adaptive control: The self-organization of structured behavior , 1992, Robotics Auton. Syst..

[51]  Kurt Jensen,et al.  Coloured Petri nets: A high level language for system design and analysis , 1991, Applications and Theory of Petri Nets.

[52]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[53]  R. Gandy COMPUTABILITY: COMPUTABLE FUNCTIONS, LOGIC AND THE FOUNDATIONS OF MATHEMATICS , 1991 .

[54]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[55]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[56]  Kuo-Chin Fan,et al.  Solving Find Path Problem in Mapped Environments Using Modified A* Algorithm , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[57]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[58]  Seth Hutchinson,et al.  An integrated architecture for robot motion planning and control in the presence of obstacles with unknown trajectories , 1995, IEEE Trans. Syst. Man Cybern..

[59]  Leonard Bolc,et al.  Computational Models of Learning , 2011, Symbolic Computation.