General transcription factors for RNA polymerase II.

[1]  R. Conaway,et al.  The RNA polymerase II elongation complex , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  M. Karin,et al.  Activation of cAMP and mitogen responsive genes relies on a common nuclear factor , 1994, Nature.

[3]  R. Roeder,et al.  TATA‐binding protein‐associated factor(s) in TFIID function through the initiator to direct basal transcription from a TATA‐less class II promoter. , 1994, The EMBO journal.

[4]  D. Gilmour,et al.  Protein/DNA crosslinking of a TFIID complex reveals novel interactions downstream of the transcription start. , 1994, Nucleic acids research.

[5]  M. Kretzschmar,et al.  A novel mediator of class II gene transcription with homology to viral immediate-early transcriptional regulators , 1994, Cell.

[6]  D. Price,et al.  Purification of P-TEFb, a Transcription Factor Required for the Transition into Productive Elongation (*) , 1995, The Journal of Biological Chemistry.

[7]  H. Timmers Transcription initiation by RNA polymerase II does not require hydrolysis of the beta‐gamma phosphoanhydride bond of ATP. , 1994, The EMBO journal.

[8]  J. Greenblatt,et al.  RAP30/74: a general initiation factor that binds to RNA polymerase II , 1988, Molecular and cellular biology.

[9]  R. Roeder,et al.  Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes , 1994, Cell.

[10]  D. Reinberg,et al.  Role of the mammalian transcription factors IIF, IIS, and IIX during elongation by RNA polymerase II , 1991, Molecular and cellular biology.

[11]  A. Sluder,et al.  Dynamic interaction between a Drosophila transcription factor and RNA polymerase II , 1989, Molecular and cellular biology.

[12]  R. Kornberg,et al.  Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast , 1994, Nature.

[13]  S. Burley,et al.  Crystal structure of a TFIIB–TBP–TATA-element ternary complex , 1995, Nature.

[14]  A. Shilatifard,et al.  An RNA Polymerase II Elongation Factor Encoded by the Human ELL Gene , 1996, Science.

[15]  William Arbuthnot Sir Lane,et al.  Positive regulation of general transcription factor SIII by a tailed ubiquitin homolog. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Conaway,et al.  Cryptic DNA-binding domain in the C terminus of RNA polymerase II general transcription factor RAP30. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. T. Kadonaga,et al.  Structure and Function of the Small Subunit of TFIIF (RAP30) from Drosophilamelanogaster(*) , 1995, The Journal of Biological Chemistry.

[18]  D. Bushnell,et al.  Different forms of TFIIH for transcription and DNA repair: Holo-TFIIH and a nucleotide excision repairosome , 1995, Cell.

[19]  Y. Yazaki,et al.  Cloning of several species of MLL/MEN chimeric cDNAs in myeloid leukemia with t(11;19)(q23;p13.1) translocation. , 1995, Blood.

[20]  D. Hogness,et al.  Spatial and temporal patterns of E74 transcription during Drosophila development , 1990, Cell.

[21]  R. Conaway,et al.  A Role for ATP and TFIIH in Activation of the RNA Polymerase II Preinitiation Complex Prior to Transcription Initiation (*) , 1996, The Journal of Biological Chemistry.

[22]  S. Humbert,et al.  Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2 (TFIIH). , 1994, The EMBO journal.

[23]  P. Sharp,et al.  Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. Bentley Regulation of transcriptional elongation by RNA polymerase II. , 1995, Current opinion in genetics & development.

[25]  R. Kornberg,et al.  Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK , 1994, Cell.

[26]  P. Ghanouni,et al.  A DNA minor groove-binding ligand both potentiates and arrests transcription by RNA polymerase II. Elongation factor SII enables readthrough at arrest sites. , 1994, Journal of molecular biology.

[27]  R. Conaway,et al.  Dissection of transcription factor TFIIF functional domains required for initiation and elongation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[28]  C. Verrijzer,et al.  CIF, an essential cofactor for TFIID-dependent initiator function. , 1996, Genes & development.

[29]  J. T. Kadonaga,et al.  Functional analysis of Drosophila transcription factor IIB. , 1992, Genes & Development.

[30]  D. Reinberg,et al.  Cdk-activating kinase complex is a component of human transcription factor TFIIH , 1995, Nature.

[31]  Qiang Zhou,et al.  Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. , 1992, Genes & development.

[32]  D. Reinberg,et al.  The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Archambault,et al.  Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II , 1992, Molecular and cellular biology.

[34]  R. Conaway,et al.  A carboxyl-terminal-domain kinase associated with RNA polymerase II transcription factor delta from rat liver. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Rowley,et al.  Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Kornberg,et al.  Cloning of a subunit of yeast RNA polymerase II transcription factor b and CTD kinase. , 1992, Science.

[37]  Tom Maniatis,et al.  Transcriptional activation: A complex puzzle with few easy pieces , 1994, Cell.

[38]  Richard A. Young,et al.  An RNA polymerase II holoenzyme responsive to activators , 1994, Nature.

[39]  R. Kornberg,et al.  RNA polymerase II initiation factor interactions and transcription start site selection. , 1994, Science.

[40]  D. Price,et al.  Control of formation of two distinct classes of RNA polymerase II elongation complexes , 1992, Molecular and cellular biology.

[41]  P. Chambon,et al.  DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. , 1993, Science.

[42]  W. Gu,et al.  Identification of a decay in transcription potential that results in elongation factor dependence of RNA polymerase II , 1995, The Journal of Biological Chemistry.

[43]  P. Sharp,et al.  Five intermediate complexes in transcription initiation by RNA polymerase II , 1989, Cell.

[44]  William Arbuthnot Sir Lane,et al.  Molecular cloning of an essential subunit of RNA polymerase II elongation factor SIII. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Gralla,et al.  Polymerase II promoter activation: closed complex formation and ATP-driven start site opening. , 1992, Science.

[46]  R. Conaway,et al.  Mechanism of promoter selection by RNA polymerase II: mammalian transcription factors alpha and beta gamma promote entry of polymerase into the preinitiation complex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[47]  P. Sharp,et al.  DNA topology and a minimal set of basal factors for transcription by RNA polymerase II , 1993, Cell.

[48]  R. Tjian,et al.  Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II , 1994, Cell.

[49]  D. Reinberg,et al.  Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II , 1994, Nature.

[50]  R. Conaway,et al.  Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription , 1993, Nature.

[51]  Michael Hampsey,et al.  The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo , 1992, Cell.

[52]  D. Bentley,et al.  Transcriptional elongation by RNA polymerase II is stimulated by transactivators , 1994, Cell.

[53]  J. Greenblatt,et al.  Structure and associated DNA-helicase activity of a general transcription initiation factor that binds to RNA polymerase II , 1989, Nature.

[54]  J. Brooks,et al.  Mutations of the VHL tumour suppressor gene in renal carcinoma , 1994, Nature Genetics.

[55]  S. Buratowski,et al.  Functional domains of transcription factor TFIIB. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Reinberg,et al.  Multiple functional domains of human transcription factor IIB: distinct interactions with two general transcription factors and RNA polymerase II. , 1993, Genes & development.

[57]  R. Kornberg,et al.  Yeast RNA polymerase II initiation factor e: isolation and identification as the functional counterpart of human transcription factor IIB. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Roeder,et al.  Potential RNA polymerase II-induced interactions of transcription factor TFIIB , 1993, Molecular and cellular biology.

[59]  D. Reinberg,et al.  Cloning of a human gene encoding the general transcription initiation factor IIB , 1991, Nature.

[60]  C. Kane,et al.  Cleavage of the nascent transcript induced by TFIIS is insufficient to promote read-through of intrinsic blocks to elongation by RNA polymerase II. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[61]  C. Gross,et al.  Amino-terminal amino acids modulate sigma-factor DNA-binding activity. , 1993, Genes & development.

[62]  Y Kubota,et al.  Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. , 1994, Cancer research.

[63]  R. Kornberg,et al.  Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[64]  P. Sharp,et al.  RNA polymerase II-associated proteins are required for a DNA conformation change in the transcription initiation complex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[65]  T. Kerppola,et al.  RNA polymerase: regulation of transcript elongation and termination , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[66]  P. Chambon,et al.  Distinct TFIID complexes mediate the effect of different transcriptional activators. , 1993, The EMBO journal.

[67]  M. Horikoshi,et al.  Transcription factor TFIIB sites important for interaction with promoter-bound TFIID. , 1993, Science.

[68]  P. Chambon,et al.  Cloning of the 62-kilodalton component of basic transcription factor BTF2. , 1992, Science.

[69]  D. Reines,et al.  Elongation factor SII-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[70]  B. Seizinger,et al.  Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma. , 1994, American journal of human genetics.

[71]  M. Ferguson-Smith,et al.  Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. , 1994, Human molecular genetics.

[72]  S. Korsmeyer,et al.  Altered Hox expression and segmental identity in Mll-mutant mice , 1995, Nature.

[73]  Yang Li,et al.  A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II , 1994, Cell.

[74]  R. Kornberg,et al.  TFIIF-TAF-RNA polymerase II connection. , 1994, Genes & development.

[75]  Y. Yasukochi,et al.  Isolation and nucleotide sequence of a rat cDNA homologous to human RAP30. , 1992, Nucleic Acids Research.

[76]  H. Klamut,et al.  The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced , 1995, Nature Genetics.

[77]  Z. Burton,et al.  Functional Domains of Human RAP74 Including a Masked Polymerase Binding Domain (*) , 1995, The Journal of Biological Chemistry.

[78]  R. Kornberg,et al.  The yeast TFB1 and SSL1 genes, which encode subunits of transcription factor IIH, are required for nucleotide excision repair and RNA polymerase II transcription , 1995, Molecular and cellular biology.

[79]  William Arbuthnot Sir Lane,et al.  Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II , 1995, Science.

[80]  R. Tjian,et al.  Drosophila TAFII150: similarity to yeast gene TSM-1 and specific binding to core promoter DNA. , 1994, Science.

[81]  J. Hoeijmakers,et al.  The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. , 1994, The EMBO journal.

[82]  Michael R. Green,et al.  Nuclear protein CBP is a coactivator for the transcription factor CREB , 1994, Nature.

[83]  R. Conaway,et al.  An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by the TATA region of promoters. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[84]  F. Holstege,et al.  The requirement for the basal transcription factor IIE is determined by the helical stability of promoter DNA. , 1995, The EMBO journal.

[85]  R. Kraus,et al.  Functional binding of the "TATA" box binding component of transcription factor TFIID to the -30 region of TATA-less promoters. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Ming Yan,et al.  Abortive Initiation and First Bond Formation at an Activated Adenovirus E4 Promoter (*) , 1995, The Journal of Biological Chemistry.

[87]  P. Sharp,et al.  A kinase-deficient transcription factor TFIIH is functional in basal and activated transcription. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[88]  J. Greenblatt,et al.  Related RNA polymerase-binding regions in human RAP30/74 and Escherichia coli sigma 70 , 1991, Science.

[89]  S. Weissman,et al.  A heteromeric transcription factor required for mammalian RNA polymerase II. , 1990, Nucleic Acids Research.

[90]  A. Bardwell,et al.  Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair , 1993, Cell.

[91]  D. Reinberg,et al.  Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II , 1992, Nature.

[92]  D. Duan,et al.  Inhibition of transcription elongation by the VHL tumor suppressor protein , 1995, Science.

[93]  E. Nigg,et al.  MAT1, cdk7 and cyclin H form a kinase complex which is UV light‐sensitive upon association with TFIIH. , 1996, The EMBO journal.

[94]  A. Kibel,et al.  Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C , 1995, Science.

[95]  S. Harrison,et al.  Delineation of two functional regions of transcription factor TFIIB. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[96]  R. Conaway,et al.  Transcription : mechanisms and regulation , 1994 .

[97]  J. Gnarra,et al.  Identification of the von Hippel-Lindau disease tumor suppressor gene. , 1993, Science.

[98]  M. Groudine,et al.  Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation. , 1995, Genes & development.

[99]  C. Gross,et al.  Polypeptides containing highly conserved regions of transcription initiation factor σ 70 exhibit specificity of binding to promoter DNA , 1992, Cell.

[100]  H. Alder,et al.  The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene , 1992, Cell.

[101]  R. Roeder,et al.  Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation , 1994, Nature.

[102]  M. Rudd,et al.  The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[103]  F. Holstege,et al.  Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. , 1996, The EMBO journal.

[104]  R. Weinmann,et al.  Mechanism of RNA polymerase II-specific initiation of transcription in vitro: ATP requirement and uncapped runoff transcripts , 1982, Cell.

[105]  D. Reinberg,et al.  The small subunit of transcription factor IIF recruits RNA polymerase II into the preinitiation complex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[106]  J. Greenblatt RNA polymerase-associated transcription factors. , 1991, Trends in biochemical sciences.

[107]  J. Greenblatt,et al.  The general transcription factor RAP30 binds to RNA polymerase II and prevents it from binding nonspecifically to DNA , 1992, Molecular and cellular biology.

[108]  D. Luse,et al.  The RNA polymerase II ternary complex cleaves the nascent transcript in a 3'----5' direction in the presence of elongation factor SII. , 1992, Genes & development.

[109]  J. Hoeijmakers,et al.  p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair. , 1994, The EMBO journal.

[110]  M. Horikoshi,et al.  Functional dissection of TFIIB domains required for TFIIB–TFIID–promoter complex formation and basal transcription activity , 1993, Nature.

[111]  M. Horikoshi,et al.  Factors involved in specific transcription by mammalian RNA polymerase II: purification and characterization of general transcription factor TFIIE. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[112]  R. Conaway,et al.  An RNA polymerase II transcription factor shares functional properties with Escherichia coli sigma 70. , 1990, Science.

[113]  W. Linehan,et al.  Germline mutations in the von Hippel–Lindau disease tumor suppressor gene: Correlations with phenotype , 1995, Human mutation.

[114]  J. Greenblatt,et al.  Proteins that bind to RNA polymerase II are required for accurate initiation of transcription at the adenovirus 2 major late promoter. , 1986, The EMBO journal.

[115]  J. Hoeijmakers,et al.  The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor , 1994, Cell.

[116]  R. Kornberg,et al.  CTD kinase associated with yeast RNA polymerase II initiation factor b , 1991, Cell.

[117]  T. Boyer,et al.  Factors (TAFs) required for activated transcription interact with TATA box-binding protein conserved core domain. , 1993, Genes & development.

[118]  Masatoshi Hagiwara,et al.  Phosphorylated CREB binds specifically to the nuclear protein CBP , 1993, Nature.

[119]  R. Young,et al.  Association of Cdk-activating kinase subunits with transcription factor TFIIH , 1995, Nature.

[120]  D. K. Hawley,et al.  Identification of a 3'-->5' exonuclease activity associated with human RNA polymerase II. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[121]  K. Agarwal,et al.  The transcription factor TFIIS zinc ribbon dipeptide Asp-Glu is critical for stimulation of elongation and RNA cleavage by RNA polymerase II. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Michael L. Cleary,et al.  Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias , 1992, Cell.