The Capacity of Symmetric Private Information Retrieval

Private information retrieval (PIR) is the problem of retrieving, as efficiently as possible, one out of <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> messages from <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> non-communicating replicated databases (each holds all <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> messages) while keeping the identity of the desired message index a secret from each individual database. Symmetric PIR (SPIR) is a generalization of PIR to include the requirement that beyond the desired message, the user learns nothing about the other <inline-formula> <tex-math notation="LaTeX">$K-1$ </tex-math></inline-formula> messages. The information theoretic capacity of SPIR (equivalently, the reciprocal of minimum download cost) is the maximum number of bits of desired information that can be privately retrieved per bit of downloaded information. We show that the capacity of SPIR is <inline-formula> <tex-math notation="LaTeX">$1-1/N$ </tex-math></inline-formula> regardless of the number of messages <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula>, if the databases have access to common randomness (not available to the user) that is independent of the messages, in the amount that is at least <inline-formula> <tex-math notation="LaTeX">$1/(N-1)$ </tex-math></inline-formula> bits per desired message bit. Otherwise, if the amount of common randomness is less than <inline-formula> <tex-math notation="LaTeX">$1/(N-1)$ </tex-math></inline-formula> bits per message bit, then the capacity of SPIR is zero. Extensions to the capacity region of SPIR and the capacity of finite length SPIR are provided.

[1]  Yuval Ishai,et al.  Founding Cryptography on Oblivious Transfer - Efficiently , 2008, CRYPTO.

[2]  Oded Goldreich,et al.  A randomized protocol for signing contracts , 1985, CACM.

[3]  Jingke Xu,et al.  Building Capacity-Achieving PIR Schemes with Optimal Sub-Packetization over Small Fields , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[4]  Syed Ali Jafar,et al.  The Asymptotic Capacity of Private Search , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[5]  Oliver W. Gnilke,et al.  Private Information Retrieval From MDS Coded Data in Distributed Storage Systems , 2018, IEEE Transactions on Information Theory.

[6]  Anderson C. A. Nascimento,et al.  On the Oblivious-Transfer Capacity of Noisy Resources , 2008, IEEE Transactions on Information Theory.

[7]  Sennur Ulukus,et al.  Multi-Message Private Information Retrieval: Capacity Results and Near-Optimal Schemes , 2017, IEEE Transactions on Information Theory.

[8]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval From Coded Databases , 2016, IEEE Transactions on Information Theory.

[9]  Sergey Yekhanin,et al.  Locally Decodable Codes and Private Information Retrieval Schemes , 2010, Information Security and Cryptography.

[10]  David A. Karpuk Private Computation of Systematically Encoded Data with Colluding Servers , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[11]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval from Byzantine and Colluding Databases , 2017, IEEE Transactions on Information Theory.

[12]  Alexandre Graell i Amat,et al.  An MDS-PIR Capacity-Achieving Protocol for Distributed Storage Using Non-MDS Linear Codes , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[13]  Ravi Tandon,et al.  The capacity of cache aided private information retrieval , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[14]  Hua Sun,et al.  The Capacity of Private Information Retrieval , 2016, 2016 IEEE Global Communications Conference (GLOBECOM).

[15]  Hua Sun,et al.  Multiround Private Information Retrieval: Capacity and Storage Overhead , 2016, IEEE Transactions on Information Theory.

[16]  Mikael Skoglund,et al.  Symmetric private information retrieval for MDS coded distributed storage , 2016, 2017 IEEE International Conference on Communications (ICC).

[17]  Hua Sun,et al.  Optimal Download Cost of Private Information Retrieval for Arbitrary Message Length , 2016, IEEE Transactions on Information Forensics and Security.

[18]  Sennur Ulukus,et al.  Asymmetry Hurts: Private Information Retrieval Under Asymmetric Traffic Constraints , 2018, IEEE Transactions on Information Theory.

[19]  Mahtab Mirmohseni,et al.  Private function retrieval , 2017, 2018 Iran Workshop on Communication and Information Theory (IWCIT).

[20]  Yuval Ishai,et al.  Protecting data privacy in private information retrieval schemes , 1998, STOC '98.

[21]  Jonathan Katz,et al.  On the efficiency of local decoding procedures for error-correcting codes , 2000, STOC '00.

[22]  Yuval Ishai,et al.  On the Hardness of Information-Theoretic Multiparty Computation , 2004, EUROCRYPT.

[23]  Michael O. Rabin,et al.  How To Exchange Secrets with Oblivious Transfer , 2005, IACR Cryptol. ePrint Arch..

[24]  Hua Sun,et al.  Private Information Retrieval from MDS Coded Data With Colluding Servers: Settling a Conjecture by Freij-Hollanti et al. , 2018, IEEE Transactions on Information Theory.

[25]  Rudolf Ahlswede,et al.  On Oblivious Transfer Capacity , 2007, 2007 IEEE International Symposium on Information Theory.

[26]  Sennur Ulukus,et al.  Fundamental Limits of Cache-Aided Private Information Retrieval With Unknown and Uncoded Prefetching , 2017, IEEE Transactions on Information Theory.

[27]  Rafail Ostrovsky,et al.  Batch codes and their applications , 2004, STOC '04.

[28]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[29]  William Gasarch A Survey on Private Information Retrieval , 2004 .

[30]  Syed Ali Jafar,et al.  The Capacity of Private Information Retrieval with Private Side Information , 2017, ArXiv.

[31]  Hua Sun,et al.  The Capacity of Private Information Retrieval with Disjoint Colluding Sets , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[32]  Gennian Ge,et al.  A general private information retrieval scheme for MDS coded databases with colluding servers , 2017, Designs, Codes and Cryptography.

[33]  Hua Sun,et al.  The Capacity of Private Computation , 2018, 2018 IEEE International Conference on Communications (ICC).

[34]  Swanand Kadhe,et al.  Private Information Retrieval With Side Information , 2017, IEEE Transactions on Information Theory.

[35]  Joe Kilian,et al.  Founding crytpography on oblivious transfer , 1988, STOC '88.

[36]  Mikael Skoglund,et al.  Secure Private Information Retrieval from Colluding Databases with Eavesdroppers , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[37]  Camilla Hollanti,et al.  Private information retrieval schemes for codec data with arbitrary collusion patterns , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[38]  Hua Sun,et al.  The Capacity of Robust Private Information Retrieval With Colluding Databases , 2016, IEEE Transactions on Information Theory.

[39]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval With Partially Known Private Side Information , 2019, IEEE Transactions on Information Theory.

[40]  Camilla Hollanti,et al.  Private Information Retrieval from Coded Databases with Colluding Servers , 2016, SIAM J. Appl. Algebra Geom..