Galilean-diagonalized spatio-temporal interest operators

This paper presents a set of image operators for detecting regions in space-time where interesting events occur. To define such regions of interest, we compute a spatio-temporal second-moment matrix from a spatio-temporal scale-space representation, and diagonalize this matrix locally, using a local Galilean transformation in space-time, optionally combined with a spatial rotation, so as to make the Galilean invariant degrees of freedom explicit. From the Galilean-diagonalized descriptor so obtained, we then formulate different types of space-time interest operators, and illustrate their properties on different types of image sequences.

[1]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Sourabh A. Niyogi,et al.  Detecting kinetic occlusion , 1995, Proceedings of IEEE International Conference on Computer Vision.

[3]  Tony Lindeberg,et al.  Time-Recursive Velocity-Adapted Spatio-Temporal Scale-Space Filters , 2002, ECCV.

[4]  T. Lindeberg,et al.  Velocity-adapted spatio-temporal receptive fields for direct recognition of activities , 2002 .

[5]  Erhardt Barth,et al.  Direct detection of flow discontinuities by 3D curvature operators , 1991, Pattern Recognit. Lett..

[6]  T. Lindeberg,et al.  Galilean-corrected spatio-temporal interest operators , 2004 .

[7]  T. Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D structure , 1997 .

[8]  Lihi Zelnik-Manor,et al.  Event-based analysis of video , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[9]  Tony Lindeberg,et al.  Linear Spatio-Temporal Scale-Space , 1997, Scale-Space.

[10]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[11]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[12]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[13]  J. J. Koenderink,et al.  Scale-time , 1988, Biological Cybernetics.

[14]  Tony Lindeberg,et al.  Scale-space theory , 2001 .

[15]  Richard P. Wildes,et al.  Qualitative Spatiotemporal Analysis Using an Oriented Energy Representation , 2000, ECCV.

[16]  Tony Lindeberg,et al.  Scale-Space with Casual Time Direction , 1996, ECCV.

[17]  Luc Florack,et al.  Scale-Time Kernels and Models , 2001, Scale-Space.

[18]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[19]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[20]  Ivan Laptev,et al.  Interest Point Detection and Scale Selection in Space-Time , 2003, Scale-Space.

[21]  James W. Davis,et al.  The representation and recognition of human movement using temporal templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[23]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[24]  Tony Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure , 1997, Image Vis. Comput..

[25]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[26]  Ivan Laptev,et al.  Velocity adaptation of space-time interest points , 2004, ICPR 2004.