Monitoring analytical measurements in presence of two component measurement error

Control charts are increasingly adopted by laboratories for effective monitoring of analytical processes. Analytical methods are mostly subject to two types of measurement errors, i—additive and ii—multiplicative, or proportional, error. These errors have been combined in a single model, namely the two component error model (TCME) proposed by [1]. In this study we present a comparison among the performance of three widely used location control charts, i.e. Shewhart, CUSUM and EWMA charts in presence of TCME model. This study will help quality practitioners to choose an efficient chart for the monitoring of analytical measurements.

[1]  David M. Rocke,et al.  Modeling uncertainty in the measurement of low-level analytes in environmental analysis. , 2003, Ecotoxicology and environmental safety.

[2]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[3]  D. Siegmund Sequential Analysis: Tests and Confidence Intervals , 1985 .

[4]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[5]  R. Ocampo-Pérez,et al.  Adsorption of Fluoride from Water Solution on Bone Char , 2007 .

[6]  Stelios Psarakis,et al.  EWMA Chart and Measurement Error , 2004 .

[7]  William H. Woodall,et al.  The Use of Control Charts in Health-Care and Public-Health Surveillance , 2006 .

[8]  D. B. Hibbert,et al.  Quality Assurance for the Analytical Chemistry Laboratory , 2007 .

[9]  Arthur B. Yeh,et al.  Exponentially Weighted Moving Average (EWMA) Control Charts for Monitoring an Analytical Process , 2008 .

[10]  L. A. Currie,et al.  LIMITS FOR QUALITATIVE DETECTION AND QUANTITATIVE DETERMINATION. APPLICATION TO RADIOCHEMISTRY. , 1968 .

[11]  W. Woodall,et al.  Multivariate CUSUM Quality- Control Procedures , 1985 .

[12]  D. Hawkins,et al.  Cumulative Sum Charts and Charting for Quality Improvement , 1998, Statistics for Engineering and Physical Science.

[13]  Charles W. Champ,et al.  The Run Length Distribution of the CUSUM with Estimated Parameters , 2004 .

[14]  Andre. Hubaux,et al.  Decision and detection limits for calibration curves , 1970 .

[15]  Douglas M. Hawkins CUMULATIVE SUM CONTROL CHARTING: AN UNDERUTILIZED SPC TOOL , 1993 .

[16]  Sheue-Ling Hwang,et al.  Application control chart concepts of designing a pre-alarm system in the nuclear power plant control room , 2008 .

[17]  William H. Woodall,et al.  Effect of Measurement Error on Shewhart Control Charts , 2001 .

[18]  William H. Woodall,et al.  CUSUM charts with variable sampling intervals , 1990 .

[19]  David M. Rocke,et al.  A Two-Component Model for Measurement Error in Analytical Chemistry , 1995 .

[20]  Werner Funk,et al.  Quality Assurance in Analytical Chemistry , 1995 .

[21]  Saddam Akber Abbasi,et al.  On the Performance of EWMA Chart in the Presence of Two-Component Measurement Error , 2010 .

[22]  G. Kateman,et al.  Quality control in analytical chemistry , 1981 .

[23]  William H. Woodall,et al.  THE STATISTICAL DESIGN OF CUSUM CHARTS , 1993 .

[24]  D. Hawkins A Cusum for a Scale Parameter , 1981 .

[25]  Muhammad Riaz,et al.  Improving the performance of CUSUM charts , 2011, Qual. Reliab. Eng. Int..

[26]  W. Woodall,et al.  The Performance of Multivariate Control Charts in the Presence of Measurement Error , 2001 .

[27]  M. Thompson,et al.  Harmonized guidelines for internal quality control in analytical chemistry laboratories (Technical Report) , 1995 .

[28]  Eamonn Mullins,et al.  Statistics for the Quality Control Chemistry Laboratory , 2003 .

[29]  Snigdhansu Chatterjee,et al.  Distribution-free cumulative sum control charts using bootstrap-based control limits , 2009, 0906.1421.

[30]  H. Mittag,et al.  Gauge imprecision effect on the performance of the X-S control chart , 1998 .