Comparative Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) of Streptococcus thermophilus St-I and its Bacteriophage-Insensitive Mutants (BIM) Derivatives

[1]  Hongtu Zhao,et al.  Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems , 2015, Cell.

[2]  Andrew Camilli,et al.  A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity , 2013, Nature.

[3]  Alan R. Davidson,et al.  Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system , 2012, Nature.

[4]  Sylvain Moineau,et al.  Cleavage of Phage DNA by the Streptococcus thermophilus CRISPR3-Cas System , 2012, PloS one.

[5]  J. Doudna,et al.  RNA-guided genetic silencing systems in bacteria and archaea , 2012, Nature.

[6]  R. Barrangou,et al.  CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. , 2011, Annual review of genetics.

[7]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[8]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[9]  H. Deveau,et al.  CRISPR/Cas system and its role in phage-bacteria interactions. , 2010, Annual review of microbiology.

[10]  L. Marraffini,et al.  CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea , 2010, Nature Reviews Genetics.

[11]  Fedor V. Karginov,et al.  The CRISPR system: small RNA-guided defense in bacteria and archaea. , 2010, Molecular cell.

[12]  Songnian Hu,et al.  [Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPRs) loci in the genomes of halophilic archaea]. , 2009, Wei sheng wu xue bao = Acta microbiologica Sinica.

[13]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[14]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[15]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[16]  Philippe Horvath,et al.  Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus , 2007, Journal of bacteriology.

[17]  Ibtissem Grissa,et al.  CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats , 2007, Nucleic Acids Res..

[18]  V. Kunin,et al.  Evolutionary conservation of sequence and secondary structures in CRISPR repeats , 2007, Genome Biology.

[19]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[20]  N. Grishin,et al.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action , 2006, Biology Direct.

[21]  Laetitia Fontaine,et al.  New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. , 2005, FEMS microbiology reviews.

[22]  J. García-Martínez,et al.  Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements , 2005, Journal of Molecular Evolution.

[23]  L. Schouls,et al.  Identification of genes that are associated with DNA repeats in prokaryotes , 2002, Molecular microbiology.

[24]  S. Moineau,et al.  Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages , 2001, Molecular microbiology.

[25]  F. J. Mojica,et al.  Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria , 2000, Molecular microbiology.

[26]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[27]  Shiraz A. Shah,et al.  Protospacer recognition motifs Mixed identities and functional diversity , 2013 .

[28]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[29]  S. Ehrlich,et al.  Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. , 2005, Microbiology.

[30]  P. Fox,et al.  Cheese: Chemistry, Physics and Microbiology , 1993, Springer US.

[31]  Jeremija Lj. Rašić,et al.  Yoghurt : scientific grounds, technology, manufacture and preparations , 1978 .