Mechanisms, Methods of Tracking and Applications of DNA Walkers: A Review.

The front cover artwork is provided by Julián Valero and Marko Škugor from Aarhus University and University of Bonn. The image shows an ad libitum representation of a new class of artificial molecular motors, coined as DNA walkers, on an athletic track testing their performance i.e. speed, directionality and progressivity. Read the full text of the Review at 10.1002/cphc.202000235.

[1]  M. Komiyama,et al.  Photocontrol of DNA Duplex Formation by Using Azobenzene‐Bearing Oligonucleotides , 2001, Chembiochem : a European journal of chemical biology.

[2]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[3]  Monika Heiner,et al.  Petri-net-based 2D design of DNA walker circuits , 2018, Natural Computing.

[4]  Michael P. Sheetz,et al.  Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility , 1985, Cell.

[5]  Luca Cardelli,et al.  The Formal Language and Design Principles of Autonomous DNA Walker Circuits. , 2016, ACS synthetic biology.

[6]  Miran Liber,et al.  A bipedal DNA motor that travels back and forth between two DNA origami tiles. , 2015, Small.

[7]  Nadrian C. Seeman,et al.  Erratum: A precisely controlled DNA biped walking device (NANO Lettres (2004) 4 (1204)) , 2004 .

[8]  P. Yin,et al.  A DNAzyme that walks processively and autonomously along a one-dimensional track. , 2005, Angewandte Chemie.

[9]  Jonathan Bath,et al.  A DNA-based molecular motor that can navigate a network of tracks. , 2012, Nature nanotechnology.

[10]  Y. Chiang,et al.  Inchworm bipedal nanowalker. , 2018, Nanoscale.

[11]  David A Leigh,et al.  Light-driven transport of a molecular walker in either direction along a molecular track. , 2011, Angewandte Chemie.

[12]  Steven M Block,et al.  Examining kinesin processivity within a general gating framework , 2015, eLife.

[13]  Zhisong Wang,et al.  Track-walking molecular motors: a new generation beyond bridge-burning designs. , 2019, Nanoscale.

[14]  Yiyi Tao,et al.  A target-triggered biosensing platform for detection of HBV DNA based on DNA walker and CHA. , 2018, Analytical biochemistry.

[15]  Wei Li,et al.  A cargo-sorting DNA robot , 2017, Science.

[16]  Na Liu,et al.  A plasmonic nanorod that walks on DNA origami , 2015, Nature Communications.

[17]  J. Reif,et al.  A unidirectional DNA walker that moves autonomously along a track. , 2004, Angewandte Chemie.

[18]  Arne Gennerich,et al.  Walking the walk: how kinesin and dynein coordinate their steps. , 2009, Current opinion in cell biology.

[19]  A. Turberfield,et al.  A free-running DNA motor powered by a nicking enzyme. , 2005, Angewandte Chemie.

[20]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[21]  M. Baroncini,et al.  Photo- and Redox-Driven Artificial Molecular Motors. , 2020, Chemical reviews.

[22]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[23]  M. Famulok,et al.  Temporal and Reversible Control of a DNAzyme by Orthogonal Photoswitching. , 2018, Journal of the American Chemical Society.

[24]  Zhisong Wang,et al.  Synergic mechanism and fabrication target for bipedal nanomotors , 2007, Proceedings of the National Academy of Sciences.

[25]  Jing Pan,et al.  Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers , 2017, Science Advances.

[26]  David A Leigh,et al.  Artificial molecular motors. , 2017, Chemical Society reviews.

[27]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[28]  H. Asanuma,et al.  A photon-fueled DNA nanodevice that contains two different photoswitches. , 2012, Angewandte Chemie.

[29]  Julián Valero,et al.  Interlocked DNA topologies for nanotechnology. , 2017, Current opinion in biotechnology.

[30]  Julián Valero,et al.  Orthogonally Photocontrolled Non-Autonomous DNA Walker. , 2019, Angewandte Chemie.

[31]  John H. Reif,et al.  The Design of Autonomous DNA Nanomechanical Devices: Walking and Rolling DNA , 2002, DNA.

[32]  Julián Valero,et al.  A bio-hybrid DNA rotor/stator nanoengine that moves along predefined tracks , 2018, Nature Nanotechnology.

[33]  Cheulhee Jung,et al.  A Simple, Cleated DNA Walker That Hangs on to Surfaces. , 2017, ACS nano.

[34]  Weihong Tan,et al.  Building a nanostructure with reversible motions using photonic energy. , 2012, ACS nano.

[35]  Iong Ying Loh,et al.  Biomimetic Autonomous Enzymatic Nanowalker of High Fuel Efficiency. , 2016, ACS nano.

[36]  Toma E Tomov,et al.  DNA bipedal motor walking dynamics: an experimental and theoretical study of the dependency on step size , 2017, Nucleic acids research.

[37]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[38]  David R. Liu,et al.  Autonomous Multistep Organic Synthesis in a Single Isothermal Solution Mediated by a DNA Walker , 2010, Nature nanotechnology.

[39]  Miran Liber,et al.  Rational design of DNA motors: fuel optimization through single-molecule fluorescence. , 2013, Journal of the American Chemical Society.

[40]  Miran Liber,et al.  Studying the structural dynamics of bipedal DNA motors with single-molecule fluorescence spectroscopy. , 2012, ACS nano.

[41]  Itamar Willner,et al.  DNA machines: bipedal walker and stepper. , 2011, Nano letters.

[42]  Dongfang Wang,et al.  A DNA Walker as a Fluorescence Signal Amplifier. , 2017, Nano letters.

[43]  Rana Jahanban-Esfahlan,et al.  Dynamic DNA nanostructures in biomedicine: beauty, utility and limits. , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[44]  Tingting Yan,et al.  DNA-Walker-Induced Allosteric Switch for Tandem Signal Amplification with Palladium Nanoparticles/Metal-Organic Framework Tags in Electrochemical Biosensing. , 2018, Analytical chemistry.

[45]  Robert M. Dirks,et al.  An autonomous polymerization motor powered by DNA hybridization , 2007, Nature Nanotechnology.

[46]  Yuguo Tang,et al.  Gold Nanoparticles-Based Multipedal DNA Walker for Ratiometric Detection of Circulating Tumor Cell. , 2019, Analytical chemistry.

[47]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[48]  Yang Liu,et al.  High-speed DNA-based rolling motors powered by RNase H , 2015, Nature nanotechnology.

[49]  T. LaBean,et al.  Nucleic acid-based nanoengineering: novel structures for biomedical applications , 2011, Interface Focus.

[50]  Jing Pan,et al.  DNA Walker‐Regulated Cancer Cell Growth Inhibition , 2016, Chembiochem : a European journal of chemical biology.

[51]  M. Famulok,et al.  Design, assembly, characterization, and operation of double-stranded interlocked DNA nanostructures , 2019, Nature Protocols.

[52]  Jing Pan,et al.  A synthetic DNA motor that transports nanoparticles along carbon nanotubes. , 2014, Nature nanotechnology.

[53]  K. Salaita,et al.  Highly polyvalent DNA motors generate 100+ piconewtons of force via autochemophoresis. , 2019, Nano letters.

[54]  Cees Dekker,et al.  Motor Proteins at Work for Nanotechnology , 2007, Science.

[55]  Ruchuan Liu,et al.  Bipedal nanowalker by pure physical mechanisms. , 2012, Physical review letters.

[56]  Darko Stefanovic,et al.  Behavior of polycatalytic assemblies in a substrate-displaying matrix. , 2006, Journal of the American Chemical Society.

[57]  Hao Yan,et al.  Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat , 2018, Nature Nanotechnology.

[58]  A. Turberfield,et al.  Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. , 2008, Physical review letters.

[59]  Weihong Tan,et al.  Direct Visualization of Walking Motions of Photocontrolled Nanomachine on the DNA Nanostructure. , 2015, Nano letters.

[60]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[61]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[62]  M. H. Liu,et al.  A DNA bipedal nanowalker with a piston-like expulsion stroke. , 2017, Nanoscale.

[63]  Nadrian C. Seeman,et al.  An Overview of Structural DNA Nanotechnology , 2007, Molecular biotechnology.

[64]  Wei Li,et al.  A catalytic assembled enzyme-free three-dimensional DNA walker and its sensing application. , 2017, Chemical communications.

[65]  D. Dryden,et al.  A small molecule that walks non-directionally along a track without external intervention. , 2012, Angewandte Chemie.

[66]  H. Asanuma,et al.  2',6'-Dimethylazobenzene as an efficient and thermo-stable photo-regulator for the photoregulation of DNA hybridization. , 2007, Chemical communications.

[67]  J. Howard,et al.  Kinesin Takes One 8-nm Step for Each ATP That It Hydrolyzes* , 1999, The Journal of Biological Chemistry.

[68]  David A Leigh,et al.  A synthetic small molecule that can walk down a track. , 2010, Nature chemistry.

[69]  Nathalie Katsonis,et al.  Electrically driven directional motion of a four-wheeled molecule on a metal surface , 2011, Nature.

[70]  A. Ellington,et al.  A stochastic DNA walker that traverses a microparticle surface , 2015, Nature nanotechnology.

[71]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[72]  Weihong Tan,et al.  An autonomous and controllable light-driven DNA walking device. , 2012, Angewandte Chemie.

[73]  Na Liu,et al.  Gold nanocrystal-mediated sliding of doublet DNA origami filaments , 2018, Nature Communications.

[74]  Jing Pan,et al.  Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation. , 2015, Journal of the American Chemical Society.

[75]  Juan Cheng,et al.  From bistate molecular switches to self-directed track-walking nanomotors. , 2014, ACS nano.

[76]  Kui Zou,et al.  Stochastic DNA Walker in Droplets for Super-Multiplex Bacteria Phenotype Detection. , 2019, Angewandte Chemie.

[77]  F. Simmel,et al.  Principles and Applications of Nucleic Acid Strand Displacement Reactions. , 2019, Chemical reviews.

[78]  Andrew D Ellington,et al.  Pattern Generation with Nucleic Acid Chemical Reaction Networks. , 2019, Chemical reviews.