Structural and functional characterization of human telomerase RNA processing and cajal body localization signals.

The RNA component of human telomerase (hTR) includes H/ACA and CR7 domains required for 3' end processing, localization, and accumulation. The terminal loop of the CR7 domain contains the CAB box (ugAG) required for targeting of scaRNAs to Cajal bodies (CB) and an uncharacterized sequence required for accumulation and processing. To dissect out the contributions of the CR7 stem loop to hTR processing and localization, we solved the solution structures of the 3' terminal stem loops of hTR CR7 and U64 H/ACA snoRNA, and the 5' terminal stem loop of U85 C/D-H/ACA scaRNA. These structures, together with analysis of localization, processing, and accumulation of hTRs containing nucleotide substitutions in the CR7 domain, identified the sequence and structural requirements of the hTR processing and CB localization signals and showed that these signals are functionally independent. Further, 3' end processing was found to be a prerequisite for translocation of hTR to CBs.

[1]  Gottfried Otting,et al.  Alignment of Biological Macromolecules in Novel Nonionic Liquid Crystalline Media for NMR Experiments , 2000 .

[2]  Tamás Kiss,et al.  Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body–specific localization signal , 2004, The Journal of cell biology.

[3]  D. Lafontaine,et al.  Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. , 2001, Nucleic acids research.

[4]  Charles D Schwieters,et al.  The Xplor-NIH NMR molecular structure determination package. , 2003, Journal of magnetic resonance.

[5]  H. Schwalbe,et al.  NMR Spectroscopy of RNA , 2003, Chembiochem : a European journal of chemical biology.

[6]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[7]  A. Pardi,et al.  Improved measurement of 13C, 31P J coupling constants in isotopically labeled RNA , 1995, FEBS letters.

[8]  K. Collins,et al.  Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. , 2003, Molecular cell.

[9]  T. Vulliamy,et al.  The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita , 2001, Nature.

[10]  M. Blasco Telomeres and human disease: ageing, cancer and beyond , 2005, Nature Reviews Genetics.

[11]  Qin Zhao,et al.  NCIR: a database of non-canonical interactions in known RNA structures , 2002, Nucleic Acids Res..

[12]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[13]  Tamás Kiss,et al.  A common sequence motif determines the Cajal body‐specific localization of box H/ACA scaRNAs , 2003, The EMBO journal.

[14]  Jiunn-Liang Chen,et al.  Secondary Structure of Vertebrate Telomerase RNA , 2000, Cell.

[15]  S. Wijmenga,et al.  Resonance assignment and structure determination for RNA. , 2001, Methods in enzymology.

[16]  C. A. Theimer,et al.  Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Blasco,et al.  Identification of Functional Domains and Dominant Negative Mutations in Vertebrate Telomerase RNA Using an in VivoReconstitution System* , 2001, The Journal of Biological Chemistry.

[18]  J. Blanchard,et al.  Intra-nuclear RNA trafficking: insights from live cell imaging. , 2002, Biochimie.

[19]  Tom Misteli,et al.  The Dynamics of Postmitotic Reassembly of the Nucleolus , 2000, The Journal of cell biology.

[20]  K. Collins,et al.  A telomerase component is defective in the human disease dyskeratosis congenita , 1999, Nature.

[21]  U. Meier,et al.  The many facets of H/ACA ribonucleoproteins , 2005, Chromosoma.

[22]  A. Matera,et al.  Pumping RNA: nuclear bodybuilding along the RNP pipeline. , 2006, Current opinion in cell biology.

[23]  Assignment methodology for larger RNA oligonucleotides: Application to an ATP-binding RNA aptamer , 1997, Journal of biomolecular NMR.

[24]  G. Goodall,et al.  Analysis of pre-mRNA processing in transfected plant protoplasts. , 1990, Methods in enzymology.

[25]  R. Gutell,et al.  Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs. , 2004, Journal of molecular biology.

[26]  K. Collins,et al.  Human telomerase and Cajal body ribonucleoproteins share a unique specificity of Sm protein association. , 2006, Genes & development.

[27]  C. A. Theimer,et al.  New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA-protein complexes , 2004, Journal of biomolecular NMR.

[28]  Jeffrey B. Cheng,et al.  A Box H/ACA Small Nucleolar RNA-Like Domain at the Human Telomerase RNA 3′ End , 1999, Molecular and Cellular Biology.

[29]  X. Darzacq,et al.  A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. , 2002, Nucleic acids research.

[30]  K. Collins,et al.  Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. , 2000, Molecular cell.

[31]  K. Collins The biogenesis and regulation of telomerase holoenzymes , 2006, Nature Reviews Molecular Cell Biology.

[32]  Tamás Kiss,et al.  Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm , 2003, The EMBO journal.

[33]  Nico Tjandra,et al.  NMR dipolar couplings for the structure determination of biopolymers in solution , 2002 .

[34]  R. Terns,et al.  Telomerase RNA accumulates in Cajal bodies in human cancer cells. , 2003, Molecular biology of the cell.

[35]  R. Terns,et al.  The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus. , 2001, RNA.

[36]  M. Blasco,et al.  Novel roles for telomerase in aging , 2006, Mechanisms of Ageing and Development.

[37]  C. A. Theimer,et al.  Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. , 2005, Molecular cell.

[38]  Tamás Kiss,et al.  Cajal body‐specific small nuclear RNAs: a novel class of 2′‐O‐methylation and pseudouridylation guide RNAs , 2002, The EMBO journal.

[39]  Jiunn-Liang Chen,et al.  Telomerase RNA structure and function: implications for dyskeratosis congenita. , 2004, Trends in biochemical sciences.

[40]  J. Feigon,et al.  A novel family of RNA tetraloop structure forms the recognition site for Saccharomyces cerevisiae RNase III , 2001, The EMBO journal.

[41]  T. Cech,et al.  Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle , 1999, Nature.

[42]  T. Kiss,et al.  A small nucleolar guide RNA functions both in 2′‐O‐ribose methylation and pseudouridylation of the U5 spliceosomal RNA , 2001, The EMBO journal.

[43]  B. Luy,et al.  Direct Evidence for Watson−Crick Base Pairs in a Dynamic Region of RNA Structure , 2000 .

[44]  C. A. Theimer,et al.  Structure and function of telomerase RNA. , 2006, Current opinion in structural biology.

[45]  K. Ye,et al.  Crystal structure of an H/ACA box ribonucleoprotein particle , 2006, Nature.

[46]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .