Feed-Forward Neural Networks and their Related Topics

[1]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[2]  Takio Kurita,et al.  Reconfigurating feedforward networks with fewer hidden nodes , 1993, Defense, Security, and Sensing.

[3]  Takio Kurita,et al.  Iterative weighted least squares algorithms for neural networks classifiers , 1992, New Generation Computing.

[4]  Alan F. Murray,et al.  Synaptic weight noise during multilayer perceptron training: fault tolerance and training improvements , 1993, IEEE Trans. Neural Networks.

[5]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[6]  David Haussler,et al.  What Size Net Gives Valid Generalization? , 1989, Neural Computation.

[7]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[8]  H. Akaike A new look at the statistical model identification , 1974 .

[9]  Lorien Y. Pratt,et al.  Comparing Biases for Minimal Network Construction with Back-Propagation , 1988, NIPS.

[10]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[11]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[12]  D.R. Hush,et al.  Progress in supervised neural networks , 1993, IEEE Signal Processing Magazine.

[13]  Hideki Asoh,et al.  An approximation of nonlinear discriminant analysis by multilayer neural networks , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[14]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[15]  Manoel Fernando Tenorio,et al.  Self-organizing network for optimum supervised learning , 1990, IEEE Trans. Neural Networks.

[16]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[17]  David Lowe,et al.  The optimised internal representation of multilayer classifier networks performs nonlinear discriminant analysis , 1990, Neural Networks.

[18]  D. Whitteridge,et al.  Learning and Relearning , 1959, Science's STKE.

[19]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[20]  M. Ishikawa,et al.  A structural learning algorithm with forgetting of link weights , 1989, International 1989 Joint Conference on Neural Networks.

[21]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[22]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[23]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[24]  Hitoshi Iba,et al.  System Identification using Structured Genetic Algorithms , 1993, ICGA.

[25]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[26]  David G. Lowe,et al.  Optimized Feature Extraction and the Bayes Decision in Feed-Forward Classifier Networks , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Robert Tibshirani,et al.  The Bootstrap Method for Assessing Statistical Accuracy , 1985 .

[28]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[29]  N. Otsu,et al.  Nonlinear data analysis and multilayer perceptrons , 1989, International 1989 Joint Conference on Neural Networks.

[30]  J. Rissanen Stochastic Complexity and Modeling , 1986 .

[31]  Shotaro Akaho,et al.  Regularization Learning of Neural Networks for Generalization , 1992, ALT.

[32]  A. G. Ivakhnenko,et al.  Polynomial Theory of Complex Systems , 1971, IEEE Trans. Syst. Man Cybern..

[33]  Geoffrey E. Hinton,et al.  Simplifying Neural Networks by Soft Weight-Sharing , 1992, Neural Computation.

[34]  Scott E. Fahlman,et al.  An empirical study of learning speed in back-propagation networks , 1988 .

[35]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Takio Kurita,et al.  A UNIFIED STUDY OF MULTIVARIATE DATA ANALYSIS METHODS BY NONLINEAR FORMULATIONS AND UNDERLYING PROBABILISTIC STRUCTURES , 1988 .

[37]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[38]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.