The least trimmed squares. Part III: Asymptotic normality

Asymptotic normality of the least trimmed squares estimator is proved under general conditions. At the end of paper a discussion of applicability of the estimator (including the discussion of algorithm for its evaluation) is offered.

[1]  J. A. Díaz-García,et al.  SENSITIVITY ANALYSIS IN LINEAR REGRESSION , 2022 .

[2]  Douglas M. Hawkins,et al.  Improved Feasible Solution Algorithms for High Breakdown Estimation , 1999 .

[3]  J. A. Vísek Sensitivity Analysis of M-Estimates of Nonlinear Regression Model: Influence of Data Subsets , 2002 .

[4]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[5]  J. A. Vísek,et al.  Sensitivity analysis of M-estimates , 1996 .

[6]  Jan Ámos Víšek,et al.  On the diversity of estimates , 2000 .

[7]  I. VÁŇOVÁ,et al.  Academy of Sciences of the Czech Republic , 2020, The Grants Register 2021.

[8]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[9]  Jana Jurečková,et al.  Regression Rank Scores Scale Statistics and Studentization in Linear Models , 1994 .

[10]  J. A. Vísek The Least Trimmed Squares – Random Carriers , 1999 .

[11]  P. Bocek,et al.  Linear programming approach to LMS-estimation , 1995 .

[12]  J. A. Vísek,et al.  Estimating the contamination level of data in the framework of linear regression analysis , 1997 .

[13]  V. Yohai,et al.  Asymptotic behavior of general M-estimates for regression and scale with random carriers , 1981 .

[14]  Jan Ámos Víšek The Least Weighted Squares I. The Asymptotic Linearity Of Normal Equations , 2002 .

[15]  P. Čížek Robust Estimation with Discrete Explanatory Variables , 2001, COMPSTAT.

[16]  REGRESSION WITH HIGH BREAKDOWN POINT , 2001 .

[17]  S. Sheather,et al.  A Cautionary Note on the Method of Least Median Squares , 1992 .

[18]  Jan Ámos Víšek The Least Weighted Squares Ii. Consistency And Asymptotic Normality , 2002 .

[19]  D. Pollard Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.

[20]  Stephen Portnoy,et al.  Tightness of the Sequence of Empiric C.D.F. Processes Defined from Regression Fractiles , 1984 .