The least trimmed squares. Part III: Asymptotic normality
暂无分享,去创建一个
[1] J. A. Díaz-García,et al. SENSITIVITY ANALYSIS IN LINEAR REGRESSION , 2022 .
[2] Douglas M. Hawkins,et al. Improved Feasible Solution Algorithms for High Breakdown Estimation , 1999 .
[3] J. A. Vísek. Sensitivity Analysis of M-Estimates of Nonlinear Regression Model: Influence of Data Subsets , 2002 .
[4] D. Ruppert. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[5] J. A. Vísek,et al. Sensitivity analysis of M-estimates , 1996 .
[6] Jan Ámos Víšek,et al. On the diversity of estimates , 2000 .
[7] I. VÁŇOVÁ,et al. Academy of Sciences of the Czech Republic , 2020, The Grants Register 2021.
[8] Peter J. Rousseeuw,et al. Robust regression and outlier detection , 1987 .
[9] Jana Jurečková,et al. Regression Rank Scores Scale Statistics and Studentization in Linear Models , 1994 .
[10] J. A. Vísek. The Least Trimmed Squares – Random Carriers , 1999 .
[11] P. Bocek,et al. Linear programming approach to LMS-estimation , 1995 .
[12] J. A. Vísek,et al. Estimating the contamination level of data in the framework of linear regression analysis , 1997 .
[13] V. Yohai,et al. Asymptotic behavior of general M-estimates for regression and scale with random carriers , 1981 .
[14] Jan Ámos Víšek. The Least Weighted Squares I. The Asymptotic Linearity Of Normal Equations , 2002 .
[15] P. Čížek. Robust Estimation with Discrete Explanatory Variables , 2001, COMPSTAT.
[16] REGRESSION WITH HIGH BREAKDOWN POINT , 2001 .
[17] S. Sheather,et al. A Cautionary Note on the Method of Least Median Squares , 1992 .
[18] Jan Ámos Víšek. The Least Weighted Squares Ii. Consistency And Asymptotic Normality , 2002 .
[19] D. Pollard. Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.
[20] Stephen Portnoy,et al. Tightness of the Sequence of Empiric C.D.F. Processes Defined from Regression Fractiles , 1984 .