Accounting for stochastic variables in discrete choice models

The estimation of discrete choice models requires measuring the attributes describing the alternatives within each individual’s choice set. Even though some attributes are intrinsically stochastic (e.g. travel times) or are subject to non-negligible measurement errors (e.g. waiting times), they are usually assumed fixed and deterministic. Indeed, even an accurate measurement can be biased as it might differ from the original (experienced) value perceived by the individual.

[1]  J. Jucker,et al.  An Empirical Study of Travel Time Variability and Travel Choice Behavior , 1982 .

[2]  K. Train Discrete Choice Methods with Simulation , 2003 .

[3]  Benjamin Heydecker,et al.  A discrete choice model incorporating thresholds forperception in attribute values , 2006 .

[4]  Al Young Providence, Rhode Island , 1975 .

[5]  Joffre Swait,et al.  Distinguishing taste variation from error structure in discrete choice data , 2000 .

[6]  Raymond J. Carroll,et al.  Covariate Measurement Error in Logistic Regression , 1985 .

[7]  Víctor Cantillo,et al.  Thresholds and indifference in stated choice surveys , 2010 .

[8]  Raymond J. Carroll,et al.  Conditional scores and optimal scores for generalized linear measurement-error models , 1987 .

[9]  Toshiyuki Yamamoto,et al.  Mode choice analysis with imprecise location information , 2010 .

[10]  Kenneth Train,et al.  The sensitivity of parameter estimates to data specification in mode choice models , 1978 .

[11]  Juan de Dios Ortúzar,et al.  Forecasting and data aggregation: theory and practice , 1990 .

[12]  C. Kao,et al.  Errors in variables in the multinomial response model , 1987 .

[13]  Denis Bolduc,et al.  On estimation of Hybrid Choice Models , 2009 .

[14]  Raymond J. Carroll,et al.  On errors-in-variables for binary regression models , 1984 .

[15]  T. Wansbeek Measurement error and latent variables in econometrics , 2000 .

[16]  Joan L. Walker Extended discrete choice models : integrated framework, flexible error structures, and latent variables , 2001 .

[17]  Juan de Dios Ortúzar,et al.  Modelling Transport, 2nd Edition , 1990 .

[18]  Alexander Kukush,et al.  Measurement Error Models , 2011, International Encyclopedia of Statistical Science.

[19]  H. Williams,et al.  Behavioural theories of dispersion and the mis-specification of travel demand models☆ , 1982 .

[20]  John M. Rose,et al.  Confidence intervals of willingness-to-pay for random coefficient logit models , 2013 .

[21]  D. Brownstone,et al.  Estimating Commuters' "Value of Time" with Noisy Data: a Multiple Imputation Approach , 2004 .

[22]  D. McFadden,et al.  MIXED MNL MODELS FOR DISCRETE RESPONSE , 2000 .

[23]  Sumeeta Srinivasan,et al.  Travel demand models in the developing world: correcting for measurement errors , 2010 .

[24]  Raul Brey,et al.  Estimating time of day demand with errors in reported preferred times: An application to airline travel , 2011 .

[25]  Stephane Hess,et al.  Recovery of inter- and intra-personal heterogeneity using mixed logit models , 2011 .

[26]  Leon G. Higley,et al.  Forensic Entomology: An Introduction , 2009 .

[27]  Bharat P. Bhatta,et al.  Errors in variables in multinomial choice modeling: A simulation study applied to a multinomial logit model of travel mode choice , 2011 .

[28]  Denis Bolduc,et al.  Hybrid Choice Modeling of New Technologies for Car Choice in Canada , 2008 .

[29]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[30]  Juan de Dios Ortúzar,et al.  Willingness-to-Pay Estimation with Mixed Logit Models: Some New Evidence , 2005 .