Human L1 Retrotransposition: cisPreference versus trans Complementation

ABSTRACT Long interspersed nuclear elements (LINEs or L1s) comprise approximately 17% of human DNA; however, only about 60 of the ∼400,000 L1s are mobile. Using a retrotransposition assay in cultured human cells, we demonstrate that L1-encoded proteins predominantly mobilize the RNA that encodes them. At much lower levels, L1-encoded proteins can act in trans to promote retrotransposition of mutant L1s and other cellular mRNAs, creating processed pseudogenes. Mutant L1 RNAs are mobilized at 0.2 to 0.9% of the retrotransposition frequency of wild-type L1s, whereas cellular RNAs are mobilized at much lower frequencies (ca. 0.01 to 0.05% of wild-type levels). Thus, we conclude that L1-encoded proteins demonstrate a profoundcis preference for their encoding RNA. This mechanism could enable L1 to remain retrotransposition competent in the presence of the overwhelming number of nonfunctional L1s present in human DNA.

[1]  S. Boissinot,et al.  L1 (LINE-1) retrotransposon evolution and amplification in recent human history. , 2000, Molecular biology and evolution.

[2]  A. Furano,et al.  Recombination creates novel L1 (LINE-1) elements in Rattus norvegicus. , 1997, Genetics.

[3]  A. Weiner,et al.  Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. , 1986, Annual review of biochemistry.

[4]  G. Swergold Identification, characterization, and cell specificity of a human LINE-1 promoter , 1990, Molecular and cellular biology.

[5]  J. V. Moran,et al.  Many human L1 elements are capable of retrotransposition , 1997, Nature Genetics.

[6]  J. Boeke,et al.  Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. , 1998, Biochemistry.

[7]  T. Fanning,et al.  The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. , 1987, Nucleic acids research.

[8]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[9]  J. V. Moran,et al.  Determination of L1 retrotransposition kinetics in cultured cells. , 2000, Nucleic acids research.

[10]  J. Shaughnessy,et al.  Leukaemia disease genes: large-scale cloning and pathway predictions , 1999, Nature Genetics.

[11]  S. Scherer,et al.  Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas , 1997, Nature Genetics.

[12]  H. Blau,et al.  Gene expression and cell fusion analyzed by lacZ complementation in mammalian cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Hohjoh,et al.  Cytoplasmic ribonucleoprotein complexes containing human LINE‐1 protein and RNA. , 1996, The EMBO journal.

[14]  S. Christensen,et al.  Target Specificity of the Endonuclease from theXenopus laevis Non-Long Terminal Repeat Retrotransposon, Tx1L , 2000, Molecular and Cellular Biology.

[15]  T. Heidmann,et al.  Functional differences between the human LINE retrotransposon and retroviral reverse transcriptases for in vivo mRNA reverse transcription , 1997, The EMBO journal.

[16]  R. Lebo,et al.  cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. , 1986, The Journal of clinical investigation.

[17]  A. Smit Interspersed repeats and other mementos of transposable elements in mammalian genomes. , 1999, Current opinion in genetics & development.

[18]  H. Kazazian,et al.  A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion , 1994, Nature Genetics.

[19]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[20]  A. F. Scott,et al.  Origin of the human L1 elements: Proposed progenitor genes deduced from a consensus DNA sequence☆ , 1987, Genomics.

[21]  S. Martin,et al.  Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells , 1991, Molecular and cellular biology.

[22]  T. Eickbush,et al.  Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm , 1988, Cell.

[23]  E. Ostertag,et al.  Transduction of 3'-flanking sequences is common in L1 retrotransposition. , 2000, Human molecular genetics.

[24]  J. Boeke,et al.  Retrotransposon R1Bm endonuclease cleaves the target sequence. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  W. Berger,et al.  Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. , 1999, Human molecular genetics.

[26]  H. Hohjoh,et al.  Sequence‐specific single‐strand RNA binding protein encoded by the human LINE‐1 retrotransposon , 1997, The EMBO journal.

[27]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[28]  A. F. Scott,et al.  Isolation of an active human transposable element. , 1991, Science.

[29]  A. Furano,et al.  The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. , 2000, Progress in nucleic acid research and molecular biology.

[30]  H H Kazazian,et al.  HUGO—a midlife crisis? , 1998, Nature Genetics.

[31]  J. V. Moran,et al.  An actively retrotransposing, novel subfamily of mouse L1 elements , 1998, The EMBO journal.

[32]  J. V. Moran,et al.  A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events. , 2000, Analytical biochemistry.

[33]  J. Boeke,et al.  Reverse transcriptase encoded by a human transposable element. , 1991, Science.

[34]  T. Heidmann,et al.  mRNA retroposition in human cells: processed pseudogene formation. , 1995, The EMBO journal.

[35]  T. Heidmann,et al.  Generation of processed pseudogenes in murine cells. , 1993, The EMBO journal.

[36]  S. Martin,et al.  Polymorphic Sequences Encoding the First Open Reading Frame Protein from LINE-1 Ribonucleoprotein Particles (*) , 1995, The Journal of Biological Chemistry.

[37]  C. Hutchison,et al.  Tempo and mode of concerted evolution in the L1 repeat family of mice. , 1985, Molecular biology and evolution.

[38]  T Darden,et al.  Evolution and extinction of transposable elements in Mendelian populations. , 1985, Genetics.

[39]  D. Turner,et al.  Secondary structure model of the RNA recognized by the reverse transcriptase from the R2 retrotransposable element. , 1997, RNA.

[40]  J. Jurka,et al.  Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  C. Hutchison,et al.  An analysis of replacement and synonymous changes in the rodent L1 repeat family. , 1986, Molecular biology and evolution.

[42]  J. Stoye,et al.  Retrotransposons, Endogenous Retroviruses, and the Evolution of Retroelements , 1997 .

[43]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[44]  S. Antonarakis,et al.  Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man , 1988, Nature.

[45]  Thierry Heidmann,et al.  Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.

[46]  T. Eickbush,et al.  RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element , 1995, Molecular and cellular biology.