Numerical accuracy of a Padé‐type non‐reflecting boundary condition for the finite element solution of acoustic scattering problems at high‐frequency

The present text deals with the numerical solution of two-dimensional high-frequency acoustic scattering problems using a new high-order and asymptotic Pade-type artificial boundary condition. The Pade-type condition is easy-to-implement in a Galerkin least-squares (iterative) finite element solver for arbitrarily convex-shaped boundaries. The method accuracy is investigated for different model problems and for the scattering problem by a submarine-shaped scatterer. As a result, relatively small computational domains, optimized according to the shape of the scatterer, can be considered while yielding accurate computations for high-frequencies. Copyright © 2005 John Wiley & Sons, Ltd.

[1]  Yousef Saad,et al.  Block LU Preconditioners for Symmetric and Nonsymmetric Saddle Point Problems , 2003, SIAM J. Sci. Comput..

[2]  I. Harari,et al.  Analytical study of the effect of wave number on the performance of local absorbing boundary conditions for acoustic scattering , 2004 .

[3]  John L. Tassoulas,et al.  CONTINUED-FRACTION ABSORBING BOUNDARY CONDITIONS FOR THE WAVE EQUATION , 2000 .

[4]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[5]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[6]  Charbel Farhat,et al.  On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method , 2002 .

[7]  X. Antoine,et al.  Alternative integral equations for the iterative solution of acoustic scattering problems , 2005 .

[8]  Xavier Antoine,et al.  Fast approximate computation of a time-harmonic scattered field using the on-surface radiation condition method , 2001 .

[9]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[10]  Marion Darbas,et al.  Préconditionneurs analytiques de type Calderon pour les formulations intégrales des problèmes de diffraction d'ondes , 2004 .

[11]  Charbel Farhat,et al.  Three‐dimensional finite element calculations in acoustic scattering using arbitrarily shaped convex artificial boundaries , 2002 .

[12]  I. Harari,et al.  Numerical investigations of stabilized finite element computations for acoustics , 2004 .

[13]  A. Taflove,et al.  A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach , 1987 .

[14]  Dan Givoli,et al.  Exact Representations on Artificial Interfaces and Applications in Mechanics , 1999 .

[15]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[16]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[17]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[18]  Lonny L. Thompson,et al.  Accurate radiation boundary conditions for the two-dimensional wave equation on unbounded domains , 2001 .

[19]  Isaac Harari,et al.  Reducing Dispersion of Linear Triangular Elements for the Helmholtz Equation , 2002 .

[20]  Olivier Vacus,et al.  Mathematical analysis of absorbing boundary conditions for the wave equation: the corner problem , 2004, Math. Comput..

[21]  Xavier Antoine,et al.  Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape , 1999 .

[22]  Yousef Saad,et al.  Preconditioning techniques for the solution of the Helmholtz equation by the finite element method , 2003, Math. Comput. Simul..

[23]  Xavier Antoine,et al.  An algorithm coupling the OSRC and FEM for the computation of an approximate scattered acoustic field by a non‐convex body , 2002 .

[24]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[25]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[26]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[27]  Charbel Farhat,et al.  A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part 2: Neumann boundary conditions , 2002 .

[28]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[29]  Thomas J. R. Hughes,et al.  Recent developments in finite element methods for structural acoustics , 1996 .

[30]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[31]  Gary H. Brooke,et al.  Rational square-root approximations for parabolic equation algorithms , 1997 .

[32]  Y. Lu,et al.  An improved surface radiation condition for high-frequency acoustic scattering problems , 2006 .

[33]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[34]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[35]  Rabia Djellouli,et al.  FINITE ELEMENT SOLUTION OF TWO-DIMENSIONAL ACOUSTIC SCATTERING PROBLEMS USING ARBITRARILY SHAPED CONVEX ARTIFICIAL BOUNDARIES , 2000 .

[36]  O. C. Zienkiewicz,et al.  Achievements and some unsolved problems of the finite element method , 2000 .

[37]  Oscar P. Bruno,et al.  Surface scattering in three dimensions: an accelerated high–order solver , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.