Iterative stepwise regression imputation using standard and robust methods
暂无分享,去创建一个
[1] Christina Gloeckner,et al. Modern Applied Statistics With S , 2003 .
[2] J L Schafer,et al. Multiple Imputation for Multivariate Missing-Data Problems: A Data Analyst's Perspective. , 1998, Multivariate behavioral research.
[3] Beat Kleiner,et al. Graphical Methods for Data Analysis , 1983 .
[4] V. Yohai. HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .
[5] Sven Serneels,et al. Principal component analysis for data containing outliers and missing elements , 2008, Comput. Stat. Data Anal..
[6] A. Gelman,et al. Multiple Imputation with Diagnostics (mi) in R: Opening Windows into the Black Box , 2011 .
[7] Gabriele B. Durrant. Imputation Methods for Handling Item-Nonresponse in the Social Sciences: A Methodological Review , 2005 .
[8] Joseph L Schafer,et al. Modeling and imputation of semicontinuous survey variables , 1999 .
[9] Nicole A. Lazar,et al. Statistical Analysis With Missing Data , 2003, Technometrics.
[10] Susanne Rässler,et al. The Impact of multiple imputation for DACSEIS , 2004 .
[11] Beat Hulliger,et al. The BACON-EEM Algorithm for Multivariate Outlier Detection in Incomplete Survey Data. , 2008 .
[12] David E. Booth,et al. Analysis of Incomplete Multivariate Data , 2000, Technometrics.
[13] Peter Goos,et al. Sequential imputation for missing values , 2007, Comput. Biol. Chem..
[14] Peter Filzmoser,et al. Imputation of missing values for compositional data using classical and robust methods , 2008 .
[15] Thomas Lumley,et al. Complex Surveys: A Guide to Analysis Using R , 2010 .
[16] Ralf Münnich,et al. Variance Estimation under Multiple Imputation , 2004 .
[17] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[18] E. Ronchetti,et al. Robust Inference for Generalized Linear Models , 2001 .
[19] John Van Hoewyk,et al. A multivariate technique for multiply imputing missing values using a sequence of regression models , 2001 .
[20] M. Templ,et al. Visualization of missing values using the R-package VIM , 2008 .
[21] PETER J. ROUSSEEUW,et al. Computing LTS Regression for Large Data Sets , 2005, Data Mining and Knowledge Discovery.
[22] Patrick Royston,et al. Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables☆ , 2010, Comput. Stat. Data Anal..
[23] S. van Buuren,et al. Flexible mutlivariate imputation by MICE , 1999 .
[24] D. Berry,et al. Statistics: Theory and Methods , 1990 .
[25] John M. Chambers,et al. Graphical Methods for Data Analysis , 1983 .
[26] Christine H. Müller,et al. High Breakdown Point and High Efficiency , 1997 .
[27] Yoshua Bengio,et al. Pattern Recognition and Neural Networks , 1995 .
[28] Jonathan D. Fisher. Income imputation and the analysis of consumer expenditure data , 2006 .
[29] Peter Filzmoser,et al. A computational and methodological framework for visualization and imputation of missing values: the R package VIM , 2011 .
[30] Gary King,et al. Amelia II: A Program for Missing Data , 2011 .
[31] V. Yohai,et al. Robust Statistics: Theory and Methods , 2006 .
[32] R. Fay. Alternative Paradigms for the Analysis of Imputed Survey Data , 1996 .