Thiadiazolo-Azaacenes.

This work reports the synthesis and characterization of bis- and tetrakis(thiadiazolo)-appended di- and tetraazaacenes, displaying up to seven catenated benzene/pyrazine rings. The targets are obtained by condensation of benzo-bis(thiadiazole)-4,5-dione with aromatic di- and tetraamines. The condensation products-up to a heptacene-like species-are stable but can be insoluble. Soluble derivatives are readily processible, but do not show enhanced electron affinities, as the two or four attached benzothiadiazole units are effectively resonance-separated from the acene body, maximizing the number of Clar-sextets.

[1]  U. Bunz,et al.  Stabilization by Benzannulation: Butterfly Azaacenes. , 2018, Chemistry.

[2]  U. Bunz,et al.  "Butterfly Wings" Stabilize Heptacene. , 2018, Chemistry.

[3]  U. Bunz,et al.  Triptycenyl‐phenazino‐thiadiazole as acceptor in organic bulk-heterojunction solar cells , 2018, Organic Electronics.

[4]  Jinchong Xiao,et al.  Synthesis, Crystal Analysis, and Optoelectronic Properties of Diazole-Functionalized Acenes and Azaacenes. , 2018, Chemistry.

[5]  Yana Vaynzof,et al.  Triptycene-Bis(aroyleneimidazole)s as Non-Fullerene Acceptors: The Missing Links. , 2017, ChemPlusChem.

[6]  J. Wuest,et al.  Molecular Organization of 2,1,3-Benzothiadiazoles in the Solid State. , 2017, The Journal of organic chemistry.

[7]  U. Bunz,et al.  A Stable Bis(benzocyclobutadiene)-Annelated Tetraazapentacene Derivative. , 2016, Chemistry.

[8]  K. Müllen,et al.  Layered Electron Acceptors by Dimerization of Acenes End- Capped with 1,2,5-Thiadiazoles. , 2016, Angewandte Chemie.

[9]  Ashlee A. Jahnke,et al.  Exciton delocalization drives rapid singlet fission in nanoparticles of acene derivatives. , 2015, Journal of the American Chemical Society.

[10]  U. Bunz The Larger Linear N-Heteroacenes. , 2015, Accounts of chemical research.

[11]  M. Baumgarten,et al.  Condensed Derivatives of Thiadiazoloquinoxaline as Strong Acceptors , 2015 .

[12]  U. Lemmer,et al.  Soluble diazaiptycenes: materials for solution-processed organic electronics. , 2015, The Journal of organic chemistry.

[13]  F. Rominger,et al.  Selective even-numbered bromination of triptycene tris(thiadiazoles). , 2014, Organic letters.

[14]  H. Sirringhaus 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon , 2014, Advanced materials.

[15]  Uwe H. F. Bunz,et al.  Große N‐Heteroacene: ein alter Hut mit neuen Federn? , 2013 .

[16]  U. Bunz,et al.  Large N-heteroacenes: new tricks for very old dogs? , 2013, Angewandte Chemie.

[17]  Wei Li,et al.  Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications , 2011, Advanced materials.

[18]  S. Barlow,et al.  6,13-Diethynyl-5,7,12,14-tetraazapentacene. , 2009, Chemistry.

[19]  Michele Muccini,et al.  Morphology and Field‐Effect‐Transistor Mobility in Tetracene Thin Films , 2005 .

[20]  Vivek Subramanian,et al.  Film Morphology and Thin Film Transistor Performance of Solution-Processed Oligothiophenes , 2004 .

[21]  M. Tashiro,et al.  4H,5H‐Benzo[1,2‐c;3,4‐c′]bis[1,2,5]thiadiazole‐4,5‐dione , 1993 .

[22]  M. Tashiro,et al.  Sulfur Nitrides in Organic Chemistry. 18. Preparation and Reduction of Benzo[1,2-c:3,4-c′:5,6-c″]tris- and Benzo[1,2-c:3,4-c′]bis[1,2,5]thiadiazole. A Convenient Route to Benzenehexamine and 1,2,3,4-Benzenetetramine , 1989 .