Pteridosperms are the backbone of seed-plant phylogeny1

Abstract Hilton J. (School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK) and R. M. Bateman (Natural History Museum, Cromwell Road, London, SW7 5BD, UK). Pteridosperms are the backbone of seed-plant phylogeny. J. Torrey Bot. Soc. 133: 119–168. 2006.— Using Doyle (1996) as a starting point, we compiled a morphological cladistic matrix of 54 coded taxa (31 wholly extinct, and 23 at least partly extant) and 102 informative characters in order to explore relationships among gymnosperms in general and pteridosperms in particular. Our core analysis omitted six supplementary fossil taxa and yielded 21 most-parsimonious trees that generated two polytomies in the strict consensus tree, both among pteridosperms; the first affected several hydraspermans, and the second affected the three peltasperm/ corystosperm taxa analyzed. The resulting topology broadly resembled topologies generated during previous morphological cladistic analyses that combined substantial numbers of extant and extinct higher taxa. Each of the five groups that include extant taxa was relatively well resolved as monophyletic and yielded the familiar Anthophyte topology (cycads (Ginkgo (conifers (Gnetales, angiosperms)))), strongly contradicting most recent DNA-based studies that placed Gnetales as sister to, or within, conifers. These five extant groups were embedded in the derived half of a morphologically diverse spectrum of extinct taxa that strongly influenced tree topology and elucidated patterns of acquisition of morphological character-states, demonstrating that pteridosperms and other more derived “stem-group” gymnosperms are critical for understanding seed-plant relationships. Collapses in strict consensus trees usually reflected either combinations of data-poor taxa or “wildcard” taxa that combine character states indicating strongly contradictory placements within the broader topology. Including three progymnosperms in the analysis and identifying the aneurophyte progymnosperm as outgroup proved crucial to topological stability. An alternative progymnosperm rooting allowed angiosperms to diverge below cycads as the basalmost of the extant groups, a morphologically unintuitive position but one that angiosperms have occupied in several recent molecular studies. We therefore believe that such topologies reflect inadequate rooting, which is inevitable in analyses of seed plants that use only extant taxa where the outgroups can only be drawn from ferns and/or lycopsids, groups that are separated from extant seed-plants by a vast phylogenetic discontinuity that is bridged only by wholly fossil groups. Given the rooting problem, and the poverty of the hypotheses of relationship that can be addressed using only extant taxa, morphology-based trees should be treated as the initial phylogenetic framework, to subsequently be tested using molecular tools and employing not only molecular systematics but also evolutionary-developmental genetics to test ambiguous homologies. Among several possible circumscriptions of pteridosperms, we prefer those that imply paraphyly rather than polyphyly and exclude only one monophyletic group, providing one cogent argument for the inclusion of extant cycads in pteridosperms. Although pteridosperms cannot realistically be delimited as a monophyletic group, they remain a valuable informal category for the plexus of gymnosperms from which arose several more readily defined monophyletic groups of seed-plants. The ideal solution of recognizing several monophyletic groups, each of which combines a “crown-group” with one or more pteridosperms, is not yet feasible, due to uncertainties of relationship and difficulties to satisfactorily delimiting the resulting groups using reliable apomorphies. Exploration of the matrix demonstrated that coding all of the organs of a plant (extinct or extant) and dividing significantly polymorphic coded taxa are highly desirable, thereby justifying the substantial investment of time required to reconstruct individual conceptual whole plants from disarticulated fossil organs.

[1]  C. B. Beck ON THE ANATOMY AND MORPHOLOGY OF LATERAL BRANCH SYSTEMS OF ARCHAEOPTERIS , 1971 .

[2]  Jun Wang,et al.  Discovery of organic connection ofChiropteris Kurr andNystroemia Halle from Early Permian of western Henan, China , 2003 .

[3]  C. B. Beck The primary vascular system of Callixylon , 1979 .

[4]  Julie A. Hawkins,et al.  Developmental Genetics and Plant Evolution , 2002 .

[5]  G. Retallack,et al.  Reconstructions of selected seed ferns , 1988 .

[6]  G. Rothwell,et al.  Compound pollen cone in a Paleozoic conifer. , 2001, American journal of botany.

[7]  D. Stevenson,et al.  Cladistics of the Spermatophyta , 1990, Brittonia.

[8]  Michael J Sanderson,et al.  Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. , 2002, American journal of botany.

[9]  C. dePamphilis,et al.  Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Rothwell Cordaixylon dumusum (Cordaitales). II. Reproductive Biology, Phenology, and Growth Ecology , 1993, International Journal of Plant Sciences.

[11]  W. Gillespie,et al.  Elkinsia gen. nov., a Late Devonian Gymnosperm with Cupulate Ovules , 1989, Botanical Gazette.

[12]  G. Rothwell,et al.  Pullaritheca longii gen. nov. and Kerryia mattenii gen. et sp. nov., lower Carboniferous cupules with ovules of the Hydrasperma tenuis-type , 1989 .

[13]  F. W. Oliver The Ovules of the older Gymnosperms1 , 1903 .

[14]  W. Martin,et al.  Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. , 1996, Molecular biology and evolution.

[15]  R. Gould,et al.  The biology of Glossopteris : evidence from petrified seed-bearing and pollen-bearing organs , 1977 .

[16]  H. Saedler,et al.  MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Palmer,et al.  The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. , 2001, Molecular phylogenetics and evolution.

[18]  K. Nixon,et al.  Functional Constraints and rbcL Evidence for Land Plant Phylogeny , 1994 .

[19]  J. G. Long Observations on the Lower Carboniferous genus Pitus Witham , 1979, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[20]  G. Rothwell,et al.  Lignophyte phylogeny and the evolution of spermatophytes : a numerical cladistic analysis , 1994 .

[21]  Pamela S Soltis,et al.  Phylogeny of seed plants based on evidence from eight genes. , 2002, American journal of botany.

[22]  T. Givnish,et al.  Consistency, characters, and the likelihood of correct phylogenetic inference. , 1997, Molecular phylogenetics and evolution.

[23]  K. Bremer THE LIMITS OF AMINO ACID SEQUENCE DATA IN ANGIOSPERM PHYLOGENETIC RECONSTRUCTION , 1988, Evolution; international journal of organic evolution.

[24]  Mark W. Chase,et al.  The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes , 1999, Nature.

[25]  T. Stützel,et al.  Morphogenesis of Male Sporangiophores of Zamia amblyphyllidia D. W. Stev. , 2003 .

[26]  K. Bremer COMBINABLE COMPONENT CONSENSUS , 1990, Cladistics : the international journal of the Willi Hennig Society.

[27]  R. Kidston V.—On the Fructification of some Ferns from the Carboniferous Formation , 1887, Transactions of the Royal Society of Edinburgh.

[28]  J. Oppenheimer The Correspondence of Henry Oldenburg. Volume VII, 1670-1671.A. Rupert Hall , Marie Boas Hall , 1970 .

[29]  L. C. Matten,et al.  THE MEGAGAMETOPHYTE OF HYDRASPERMA TENUIS LONG FROM THE UPPER DEVONIAN OF IRELAND , 1984 .

[30]  J. Kerp Aspects of Permian palaeobotany and palynology. X. The West- and Central European species of the genus Autunia Krasser emend. Kerp (Peltaspermaceae) and the form-genus Rhachiphyllum Kerp (Callipterid Foliage) , 1988 .

[31]  J. Doyle,et al.  Morphological Phylogenetic Analysis of Basal Angiosperms: Comparison and Combination with Molecular Data , 2000, International Journal of Plant Sciences.

[32]  M. Bertrand Les caractéristiques du genre Taxospermum de Brongniart , 1907 .

[33]  D. S. Parker,et al.  The Mostly Male Theory of Flower Evolutionary Origins: from Genes to Fossils , 2000 .

[34]  G. Rothwell ONTOGENY OF THE PALEOZOIC OVULE, CALLOSPERMARION PUSILLUM , 1971 .

[35]  C. J. Chamberlain Macrozamia Moorei, a Connecting Link between Living and Fossil Cycads , 1913, Botanical Gazette.

[36]  S. Pääbo,et al.  Genetic analyses from ancient DNA. , 2004, Annual review of genetics.

[37]  D. Scott Studies on fossil botany , 2012, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.

[38]  H. H. Thomas VII. On some pteridospermous plants from the Mesozoic rocks of South Africa , 1932 .

[39]  J. G. Long XII.—On the Structure of Samaropsis scotica Calder (emended) and Eurystoma angulare gen. et sp. nov., Petrified Seeds from the Calciferous Sandstone Series of Berwickshire , 1960, Transactions of the Royal Society of Edinburgh.

[40]  G. Rothwell,et al.  Cecropsis luculentum gen. et sp. nov.: evidence for heterosporous Progymnosperms in the upper Pennsylvanian of North America , 1989 .

[41]  G. Rothwell,et al.  Additional observations on Rhynchosperma quinnii (Medullosaceae): a permineralized ovule from the Chesterian (Upper Mississippian) Fayetteville Formation of Arkansas. , 2002, American journal of botany.

[42]  R. Stockey,et al.  Permineralized Pine Cones from the Cretaceous of Vancouver Island, British Columbia , 2002, International Journal of Plant Sciences.

[43]  J. G. Long X.—Some Specimens of Lyginorachis papilio Kidston Associated with Stems of Pitys , 1963, Transactions of the Royal Society of Edinburgh.

[44]  D. Soltis,et al.  Floral Developmental Morphology of Amborella trichopoda (Amborellaceae) , 2004, International Journal of Plant Sciences.

[45]  G. Rothwell,et al.  ORIGIN OF SEED PLANTS: AN ANEUROPHYTE/SEED-FERN LINK ELABORATED' , 1987 .

[46]  W. Liese,et al.  The morphological variability of the bordered pit membranes in gymnosperms , 1972, Wood Science and Technology.

[47]  G. Rothwell,et al.  Growth Architecture of Thucydia mahoningensis, a Model for Primitive Walchian Conifer Plants , 2003, International Journal of Plant Sciences.

[48]  J. R. Jennings THE MORPHOLOGY AND RELATIONSHIPS OF RHODEA, TELANGIUM, TELANGIOPSIS, AND HETERANGIUM , 1976 .

[49]  M. Calder X.—On Some Undescribed Species from the Lower Carboniferous Flora of Berwickshire; together with a Note on the Genus Stenomyelon Kidston , 1938, Transactions of the Royal Society of Edinburgh.

[50]  L. C. Matten,et al.  A probable pteridosperm from the uppermost Devonian near Ballyheigue, Co. Kerry, Ireland , 1983 .

[51]  M. Benson. On the Contents of the Pollen Chamber of a Specimen of Lagenostoma ovoides , 1908, Botanical Gazette.

[52]  G. Rothwell,et al.  QUAESTORA AMPLECTA GEN. ET SP. N., A STRUCTURALLY SIMPLE MEDULLOSAN STEM FROM THE UPPER MISSISSIPPIAN OF ARKANSAS , 1980 .

[53]  A. Smith,et al.  Systematics and the Fossil Record: Documenting Evolutionary Patterns , 1994 .

[54]  W. Williamson,et al.  Further Observations on the Organization of the Fossil Plants of the Coal-Measures. Part III. Lyginodendron and Heterangium , 2022 .

[55]  G. Rothwell,et al.  Anatomically preserved Cycadeoidea (Cycadeoidaceae), with a reevaluation of systematic characters for the seed cones of Bennettitales. , 2002, American journal of botany.

[56]  S. Scheckler,et al.  Typification and redescription of Moresnetia zalesskyi Stockmans, 1948, an early seed plant from the Upper Famennian of Belgium , 1987 .

[57]  G. Schmidt,et al.  Archaefructaceae, a New Basal Angiosperm Family , 2002 .

[58]  P. Herendeen,et al.  Fossils and plant phylogeny. , 2004, American journal of botany.

[59]  S. Carlquist Wood, Bark, and Stem Anatomy of Gnetales: A Summary , 1996, International Journal of Plant Sciences.

[60]  P. M. Bonamo,et al.  TETRAXYLOPTERIS SCHMIDTII: ITS FERTILE PARTS AND ITS RELATIONSHIPS WITHIN THE ANEUROPHYTALES , 1967 .

[61]  S. Jansen,et al.  Intervascular pit membranes with a torus in the wood of Ulmus (Ulmaceae) and related genera. , 2004, The New phytologist.

[62]  R. Bateman,et al.  Genesis of phenotypic and genotypic diversity in land plants: The present as the key to the past , 2003 .

[63]  J. Hilton,et al.  Cordaitalean Seed Plants from the Early Permian of North China. I. Delimitation and Reconstruction of the Shanxioxylon sinense Plant , 2003, International Journal of Plant Sciences.

[64]  M. Mundry Morphogenesis of the reproductive shoots of Welwitschia mirabilis and Ephedra distachya (Gnetales), and its evolutionary implications , 2004 .

[65]  T. Taylor,et al.  PETRIFIED PLANTS FROM THE UPPER MISSISSIPPIAN OF NORTH AMERICA. II. LEPIDOSTROBUS FAYETTEVILLENSE SP. N. , 1968 .

[66]  Peter R. Crane,et al.  Phylogenetic analysis of seed plants and the origin of angiosperms , 1985 .

[67]  Zhou,et al.  In search of the first flower: A jurassic angiosperm, archaefructus, from northeast china , 1998, Science.

[68]  G. Rothwell,et al.  Anatomically preserved vojnovskyalean seed plants in Upper Pennsylvanian (Stephanian) marine shales of North America , 1996, Journal of Paleontology.

[69]  J. Kerp,et al.  Aspects of Permian palaeobotany and palynology. XI. On the recognition of true peltasperms in the Upper Permian of Western and Central Europe and a reclassification of species formerly included in Peltaspermum Harris , 1990 .

[70]  W. DiMichele,et al.  Paleoecology of Late Paleozoic pteridosperms from tropical Euramerica1 , 2006 .

[71]  J. Schabilion,et al.  A TETRAHEDRAL MEGASPORE ARRANGEMENT IN A SEED FERN OVULE OF PENNSYLVANIAN AGE , 1979 .

[72]  W. Gordon XII.—On Salpingostoma dasu: A New Carboniferous Seed from East Lothian , 1942, Transactions of the Royal Society of Edinburgh.

[73]  L. C. Matten,et al.  Reconstruction of the frond of Laceya hibernica, a Lyginopterid pteridosperm from the uppermost Devonian of Ireland , 1996 .

[74]  J. G. Long Some Lower Carboniferous pteridosperm cupules bearing ovules and microsporangia , 1977, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[75]  W. Martin,et al.  Molecular Data from the Chloroplast rpoC1 Gene Suggest a Deep and Distinct Dichotomy of Contemporary Spermatophytes into Two Monophyla: Gymnosperms (Including Gnetales) and Angiosperms , 1999, Journal of Molecular Evolution.

[76]  M. Chase,et al.  The Families and Genera of Cycads: A Molecular Phylogenetic Analysis of Cycadophyta Based on Nuclear and Plastid DNA Sequences , 2003, International Journal of Plant Sciences.

[77]  M. Frohlich Recent Developments Regarding the Evolutionary Origin of Flowers , 2006 .

[78]  E. M. Friis,et al.  Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China , 2003, Plant Systematics and Evolution.

[79]  M. Donoghue,et al.  Fossils and seed plant phylogeny reanalyzed , 1992, Brittonia.

[80]  T. Taylor,et al.  Petrified stems bearing Dicroidium leaves from the Triassic of Antarctica , 1993 .

[81]  G. Rothwell,et al.  Functional morphology and homologies of gymnospermous ovules: evidence from a new species of Stephanospermum (Medullosales) , 1995 .

[82]  J. G. Long Observations on Carboniferous seeds of Mitrospermum, Conostoma and Lagenostoma , 1977, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[83]  J. Palmer,et al.  Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[84]  J. Palmer,et al.  Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. , 2000, Molecular biology and evolution.

[85]  G. Theißen,et al.  The major clades of MADS-box genes and their role in the development and evolution of flowering plants. , 2003, Molecular phylogenetics and evolution.

[86]  P. Forey PhyloCode-pain, no gain , 2002 .

[87]  G. Rothwell,et al.  Barthelia furcata gen. et sp. nov., with a Review of Paleozoic Coniferophytes and a Discussion of Coniferophyte Systematics , 2001, International Journal of Plant Sciences.

[88]  K. Nixon,et al.  On the Other “Phylogenetic Systematics” , 2000, Cladistics : the international journal of the Willi Hennig Society.

[89]  R. Schmid ELECTRON MICROSCOPY OF WOOD OF CALLIXYLON AND CORDAITES , 1967 .

[90]  J. Doyle Seed Plant Phylogeny and the Relationships of Gnetales , 1996, International Journal of Plant Sciences.

[91]  J. G. Burleigh,et al.  Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. , 2004, American journal of botany.

[92]  J. G. Long IX.—Stamnostoma huttonense gen. et sp. nov.—a Pteridosperm seed and cupule from the Calciferous Sandstone Series of Berwickshire , 1960, Transactions of the Royal Society of Edinburgh.

[93]  C. B. Beck Current status of the Progymnospermopsida , 1976 .

[94]  O. Béthoux,et al.  Morphology and growth habit of Dicksonites pluckenetii from the Upper Carboniferous of Graissessac (France) , 2002 .

[95]  J. G. Long XV.—Some Pteridosperm Seeds from the Calciferous Sandstone Series of Berwickshire , 1961, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[96]  T. Taylor,et al.  The Biology and Evolution of Fossil Plants , 1993 .

[97]  J. G. Long On the Prothallus of Lagenostoma ovoides Will , 1944 .

[98]  G. Rothwell,et al.  Structure and relationships of primitive conifers , 1991 .

[99]  H. H. Thomas The Caytoniales, a New Group of Angiospermous Plants from the Jurassic Rocks of Yorkshire , 1925 .

[100]  G. Rothwell,et al.  Characterizing the Most Primitive Seed Ferns. I. A Reconstruction of Elkinsia polymorpha , 1992, International Journal of Plant Sciences.

[101]  E. M. Friis,et al.  On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[102]  T. Taylor,et al.  Devonian spore ultrastructure: Rhabdosporites , 1996 .

[103]  C. B. Beck TETRAXYLOPTERIS SCHMIDTII GEN. ET SP. NOV., A PROBABLE PTERIDOSPERM PRECURSOR FROM THE DEVONIAN OF NEW YORK , 1957 .

[104]  Kevin C. Nixon,et al.  A Reevaluation of Seed Plant Phylogeny , 1994 .

[105]  M. Källersjö,et al.  Taxon sampling and seed plant phylogeny , 2002, Cladistics : the international journal of the Willi Hennig Society.

[106]  T. Taylor,et al.  Anatomy of umkomasia (corystospermales) from the triassic of antarctica. , 2002, American journal of botany.

[107]  A. Zharkikh,et al.  Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. , 1997, Molecular biology and evolution.

[108]  J. Hilton,et al.  Reinvestigation of Cardiocarpus minor (Wang) Li nomen nudum from the Lower Permian of China and its implications for seed plant taxonomy, systematics and phylogeny , 2003 .

[109]  B. Axsmith,et al.  The structure and phylogenetic significance of the conifer Pseudohirmerella delawarensis nov. comb. from the Upper Triassic of North America , 2004 .

[110]  R. Bateman,et al.  A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 1. Floristics and the development of whole-plant concepts , 1990, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[111]  William Crawford Williamson,et al.  VII. On the organization of the fossil plants of the coal-measures.―Part VIII. Ferns (continued) and gymnospermous stems and seeds , 1877, Philosophical Transactions of the Royal Society of London.

[112]  E. M. Friis,et al.  Archaefructus--angiosperm precursor or specialized early angiosperm? , 2003, Trends in plant science.

[113]  R. Olmstead,et al.  Inference of higher-order relationships in the cycads from a large chloroplast data set. , 2003, Molecular phylogenetics and evolution.

[114]  Zhiduan Chen,et al.  Morphology and affinities of an Early Cretaceous Ephedra (Ephedraceae) from China. , 2005, American journal of botany.

[115]  G. Rothwell,et al.  Morphology, Systematics, and Paleoecology of Paleozoic Fossil Plants: Mesoxylon priapi, sp. nov. (Cordaitales) , 1985 .

[116]  S. Scheckler,et al.  ANATOMY AND RELATIONSHIPS OF SOME DEVONIAN PROGYMNOSPERMS FROM NEW YORK , 1971 .

[117]  R. Spicer,et al.  Anatomy and palaeoecology of Pseudofrenelopsis and associated conifers in the English Wealden , 1981 .

[118]  M. Benton Stems, nodes, crown clades, and rank‐free lists: is Linnaeus dead? , 2000, Biological reviews of the Cambridge Philosophical Society.

[119]  M. Källersjö,et al.  Seed Plant Relationships and the Systematic Position of Gnetales Based on Nuclear and Chloroplast DNA: Conflicting Data, Rooting Problems, and the Monophyly of Conifers , 2002, International Journal of Plant Sciences.

[120]  J. Doyle,et al.  Seed ferns and the origin of angiosperms , 2006 .

[121]  H. Won,et al.  Horizontal gene transfer from flowering plants to Gnetum , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[122]  D. Scott XXVII.—Fossil Plants of the Calamopitys Type, from the Carboniferous Rocks of Scotland , 1925, Transactions of the Royal Society of Edinburgh.

[123]  R. Bateman,et al.  HETEROSPORY: THE MOST ITERATIVE KEY INNOVATION IN THE EVOLUTIONARY HISTORY OF THE PLANT KINGDOM , 1994 .

[124]  M. Trivett Growth Architecture, Structure, and Relationships of Cordaixylon iowensis Nov. comb. (Cordaitales) , 1992, International Journal of Plant Sciences.

[125]  G. Rothwell The callistophytales (Pteridospermopsida): Reproductively sophisticated paleozoic gymnosperms , 1981 .

[126]  T. Delevoryas,et al.  A New Pteridosperm from Upper Pennsylvanian Deposits of North America , 1954 .

[127]  T. Taylor,et al.  Mesozoic seed ferns: Old paradigms, new discoveries1 , 2006 .

[128]  F. W. Oliver,et al.  On the Structure and Affinities of the Palaeozoic Seeds of the Conostoma Group , 1911 .

[129]  Wilson N. Stewart Paleobotany and the Evolution of Plants , 1983 .

[130]  C. M. Berry,et al.  A new species of Tetraxylopteris (Aneurophytales) from the Devonian of Venezuela , 2005 .

[131]  M. Krings,et al.  CONIFER POLLEN CONES FROM THE CRETACEOUS OF ARKANSAS: IMPLICATIONS FOR DIVERSITY AND REPRODUCTION IN THE CHEIROLEPIDIACEAE , 2004 .

[132]  J. G. Long XVII.—Some Specimens of Stenomyelon and Kalymma from the Calciferous Sandstone Series of Berwickshire , 1963, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[133]  K. Pigg,et al.  Palaeobotany: Swimming sperm in an extinct Gondwanan plant , 2003, Nature.

[134]  C. B. Beck THE APPEARANCE OF GYMNOSPERMOUS STRUCTURE , 1970 .

[135]  L. C. Matten,et al.  Studies on the cupulate seed genus Hydrasperma Long from Berwickshire and East Lothian in Scotland and County Kerry in Ireland , 1980 .

[136]  M. Donoghue,et al.  The importance of fossils in elucidating seed plant phylogeny and macroevolution , 1987 .

[137]  G. Rothwell New interpretations of the earliest conifers , 1982 .

[138]  J. G. Long 12.—Further Observations on some Lower Carboniferous Seeds and Cupules , 1975, Transactions of the Royal Society of Edinburgh.

[139]  Cheng-Sen Li,et al.  Reinvestigation of Nystroemia pectiniformis Halle, an enigmatic seed plant from the Upper Permian of China , 2003 .

[140]  B. Meyer-Berthaud,et al.  The diversification of early arborescent seed ferns , 2006 .

[141]  M. Hasebe,et al.  Phylogeny of gymnosperms inferred fromrbcL gene sequences , 1992, The botanical magazine = Shokubutsu-gaku-zasshi.

[142]  G. Rothwell,et al.  Thucydiaceae Fam. Nov., with a Review and Reevaluation of Paleozoic Walchian Conifers , 2001, International Journal of Plant Sciences.

[143]  Michael J. Donoghue,et al.  Seed plant phylogeny and the origin of angiosperms: An experimental cladistic approach , 1986, The Botanical Review.

[144]  R. Bateman EVOLUTIONARY‐DEVELOPMENTAL CHANGE IN THE GROWTH ARCHITECTURE OF FOSSIL RHIZOMORPHIC LYCOPSIDS: SCENARIOS CONSTRUCTED ON CLADISTIC FOUNDATIONS , 1994 .

[145]  D. Maddison,et al.  MacClade 4: analysis of phy-logeny and character evolution , 2003 .

[146]  W. Stein,et al.  A Reinvestigation of Stenomyelon from the Late Tournaisian of Scotland , 1995, International Journal of Plant Sciences.

[147]  J. Hilton,et al.  Callospermarion ovules from the Early Permian of northern China: palaeofloristic and palaeogeographic significance of callistophytalean seed-ferns in the Cathaysian flora , 2002 .

[148]  T. Taylor,et al.  New perspectives on the Mesozoic seed fern order Corystospermales based on attached organs from the Triassic of Antarctica. , 2000, American journal of botany.

[149]  J. Palmer,et al.  Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[150]  D. Maddison The discovery and importance of multiple islands of most , 1991 .

[151]  J. Doyle Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. , 1998, Molecular phylogenetics and evolution.

[152]  G. Rothwell,et al.  Diversity Among Paleozoic Cordaitales: The Vascular Architecture of Mesoxylon birame Baxter , 1988, Botanical Gazette.