Pteridosperms are the backbone of seed-plant phylogeny1
暂无分享,去创建一个
[1] C. B. Beck. ON THE ANATOMY AND MORPHOLOGY OF LATERAL BRANCH SYSTEMS OF ARCHAEOPTERIS , 1971 .
[2] Jun Wang,et al. Discovery of organic connection ofChiropteris Kurr andNystroemia Halle from Early Permian of western Henan, China , 2003 .
[3] C. B. Beck. The primary vascular system of Callixylon , 1979 .
[4] Julie A. Hawkins,et al. Developmental Genetics and Plant Evolution , 2002 .
[5] G. Retallack,et al. Reconstructions of selected seed ferns , 1988 .
[6] G. Rothwell,et al. Compound pollen cone in a Paleozoic conifer. , 2001, American journal of botany.
[7] D. Stevenson,et al. Cladistics of the Spermatophyta , 1990, Brittonia.
[8] Michael J Sanderson,et al. Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. , 2002, American journal of botany.
[9] C. dePamphilis,et al. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[10] G. Rothwell. Cordaixylon dumusum (Cordaitales). II. Reproductive Biology, Phenology, and Growth Ecology , 1993, International Journal of Plant Sciences.
[11] W. Gillespie,et al. Elkinsia gen. nov., a Late Devonian Gymnosperm with Cupulate Ovules , 1989, Botanical Gazette.
[12] G. Rothwell,et al. Pullaritheca longii gen. nov. and Kerryia mattenii gen. et sp. nov., lower Carboniferous cupules with ovules of the Hydrasperma tenuis-type , 1989 .
[13] F. W. Oliver. The Ovules of the older Gymnosperms1 , 1903 .
[14] W. Martin,et al. Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. , 1996, Molecular biology and evolution.
[15] R. Gould,et al. The biology of Glossopteris : evidence from petrified seed-bearing and pollen-bearing organs , 1977 .
[16] H. Saedler,et al. MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[17] J. Palmer,et al. The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. , 2001, Molecular phylogenetics and evolution.
[18] K. Nixon,et al. Functional Constraints and rbcL Evidence for Land Plant Phylogeny , 1994 .
[19] J. G. Long. Observations on the Lower Carboniferous genus Pitus Witham , 1979, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.
[20] G. Rothwell,et al. Lignophyte phylogeny and the evolution of spermatophytes : a numerical cladistic analysis , 1994 .
[21] Pamela S Soltis,et al. Phylogeny of seed plants based on evidence from eight genes. , 2002, American journal of botany.
[22] T. Givnish,et al. Consistency, characters, and the likelihood of correct phylogenetic inference. , 1997, Molecular phylogenetics and evolution.
[23] K. Bremer. THE LIMITS OF AMINO ACID SEQUENCE DATA IN ANGIOSPERM PHYLOGENETIC RECONSTRUCTION , 1988, Evolution; international journal of organic evolution.
[24] Mark W. Chase,et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes , 1999, Nature.
[25] T. Stützel,et al. Morphogenesis of Male Sporangiophores of Zamia amblyphyllidia D. W. Stev. , 2003 .
[26] K. Bremer. COMBINABLE COMPONENT CONSENSUS , 1990, Cladistics : the international journal of the Willi Hennig Society.
[27] R. Kidston. V.—On the Fructification of some Ferns from the Carboniferous Formation , 1887, Transactions of the Royal Society of Edinburgh.
[28] J. Oppenheimer. The Correspondence of Henry Oldenburg. Volume VII, 1670-1671.A. Rupert Hall , Marie Boas Hall , 1970 .
[29] L. C. Matten,et al. THE MEGAGAMETOPHYTE OF HYDRASPERMA TENUIS LONG FROM THE UPPER DEVONIAN OF IRELAND , 1984 .
[30] J. Kerp. Aspects of Permian palaeobotany and palynology. X. The West- and Central European species of the genus Autunia Krasser emend. Kerp (Peltaspermaceae) and the form-genus Rhachiphyllum Kerp (Callipterid Foliage) , 1988 .
[31] J. Doyle,et al. Morphological Phylogenetic Analysis of Basal Angiosperms: Comparison and Combination with Molecular Data , 2000, International Journal of Plant Sciences.
[32] M. Bertrand. Les caractéristiques du genre Taxospermum de Brongniart , 1907 .
[33] D. S. Parker,et al. The Mostly Male Theory of Flower Evolutionary Origins: from Genes to Fossils , 2000 .
[34] G. Rothwell. ONTOGENY OF THE PALEOZOIC OVULE, CALLOSPERMARION PUSILLUM , 1971 .
[35] C. J. Chamberlain. Macrozamia Moorei, a Connecting Link between Living and Fossil Cycads , 1913, Botanical Gazette.
[36] S. Pääbo,et al. Genetic analyses from ancient DNA. , 2004, Annual review of genetics.
[37] D. Scott. Studies on fossil botany , 2012, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.
[38] H. H. Thomas. VII. On some pteridospermous plants from the Mesozoic rocks of South Africa , 1932 .
[39] J. G. Long. XII.—On the Structure of Samaropsis scotica Calder (emended) and Eurystoma angulare gen. et sp. nov., Petrified Seeds from the Calciferous Sandstone Series of Berwickshire , 1960, Transactions of the Royal Society of Edinburgh.
[40] G. Rothwell,et al. Cecropsis luculentum gen. et sp. nov.: evidence for heterosporous Progymnosperms in the upper Pennsylvanian of North America , 1989 .
[41] G. Rothwell,et al. Additional observations on Rhynchosperma quinnii (Medullosaceae): a permineralized ovule from the Chesterian (Upper Mississippian) Fayetteville Formation of Arkansas. , 2002, American journal of botany.
[42] R. Stockey,et al. Permineralized Pine Cones from the Cretaceous of Vancouver Island, British Columbia , 2002, International Journal of Plant Sciences.
[43] J. G. Long. X.—Some Specimens of Lyginorachis papilio Kidston Associated with Stems of Pitys , 1963, Transactions of the Royal Society of Edinburgh.
[44] D. Soltis,et al. Floral Developmental Morphology of Amborella trichopoda (Amborellaceae) , 2004, International Journal of Plant Sciences.
[45] G. Rothwell,et al. ORIGIN OF SEED PLANTS: AN ANEUROPHYTE/SEED-FERN LINK ELABORATED' , 1987 .
[46] W. Liese,et al. The morphological variability of the bordered pit membranes in gymnosperms , 1972, Wood Science and Technology.
[47] G. Rothwell,et al. Growth Architecture of Thucydia mahoningensis, a Model for Primitive Walchian Conifer Plants , 2003, International Journal of Plant Sciences.
[48] J. R. Jennings. THE MORPHOLOGY AND RELATIONSHIPS OF RHODEA, TELANGIUM, TELANGIOPSIS, AND HETERANGIUM , 1976 .
[49] M. Calder. X.—On Some Undescribed Species from the Lower Carboniferous Flora of Berwickshire; together with a Note on the Genus Stenomyelon Kidston , 1938, Transactions of the Royal Society of Edinburgh.
[50] L. C. Matten,et al. A probable pteridosperm from the uppermost Devonian near Ballyheigue, Co. Kerry, Ireland , 1983 .
[51] M. Benson.. On the Contents of the Pollen Chamber of a Specimen of Lagenostoma ovoides , 1908, Botanical Gazette.
[52] G. Rothwell,et al. QUAESTORA AMPLECTA GEN. ET SP. N., A STRUCTURALLY SIMPLE MEDULLOSAN STEM FROM THE UPPER MISSISSIPPIAN OF ARKANSAS , 1980 .
[53] A. Smith,et al. Systematics and the Fossil Record: Documenting Evolutionary Patterns , 1994 .
[54] W. Williamson,et al. Further Observations on the Organization of the Fossil Plants of the Coal-Measures. Part III. Lyginodendron and Heterangium , 2022 .
[55] G. Rothwell,et al. Anatomically preserved Cycadeoidea (Cycadeoidaceae), with a reevaluation of systematic characters for the seed cones of Bennettitales. , 2002, American journal of botany.
[56] S. Scheckler,et al. Typification and redescription of Moresnetia zalesskyi Stockmans, 1948, an early seed plant from the Upper Famennian of Belgium , 1987 .
[57] G. Schmidt,et al. Archaefructaceae, a New Basal Angiosperm Family , 2002 .
[58] P. Herendeen,et al. Fossils and plant phylogeny. , 2004, American journal of botany.
[59] S. Carlquist. Wood, Bark, and Stem Anatomy of Gnetales: A Summary , 1996, International Journal of Plant Sciences.
[60] P. M. Bonamo,et al. TETRAXYLOPTERIS SCHMIDTII: ITS FERTILE PARTS AND ITS RELATIONSHIPS WITHIN THE ANEUROPHYTALES , 1967 .
[61] S. Jansen,et al. Intervascular pit membranes with a torus in the wood of Ulmus (Ulmaceae) and related genera. , 2004, The New phytologist.
[62] R. Bateman,et al. Genesis of phenotypic and genotypic diversity in land plants: The present as the key to the past , 2003 .
[63] J. Hilton,et al. Cordaitalean Seed Plants from the Early Permian of North China. I. Delimitation and Reconstruction of the Shanxioxylon sinense Plant , 2003, International Journal of Plant Sciences.
[64] M. Mundry. Morphogenesis of the reproductive shoots of Welwitschia mirabilis and Ephedra distachya (Gnetales), and its evolutionary implications , 2004 .
[65] T. Taylor,et al. PETRIFIED PLANTS FROM THE UPPER MISSISSIPPIAN OF NORTH AMERICA. II. LEPIDOSTROBUS FAYETTEVILLENSE SP. N. , 1968 .
[66] Peter R. Crane,et al. Phylogenetic analysis of seed plants and the origin of angiosperms , 1985 .
[67] Zhou,et al. In search of the first flower: A jurassic angiosperm, archaefructus, from northeast china , 1998, Science.
[68] G. Rothwell,et al. Anatomically preserved vojnovskyalean seed plants in Upper Pennsylvanian (Stephanian) marine shales of North America , 1996, Journal of Paleontology.
[69] J. Kerp,et al. Aspects of Permian palaeobotany and palynology. XI. On the recognition of true peltasperms in the Upper Permian of Western and Central Europe and a reclassification of species formerly included in Peltaspermum Harris , 1990 .
[70] W. DiMichele,et al. Paleoecology of Late Paleozoic pteridosperms from tropical Euramerica1 , 2006 .
[71] J. Schabilion,et al. A TETRAHEDRAL MEGASPORE ARRANGEMENT IN A SEED FERN OVULE OF PENNSYLVANIAN AGE , 1979 .
[72] W. Gordon. XII.—On Salpingostoma dasu: A New Carboniferous Seed from East Lothian , 1942, Transactions of the Royal Society of Edinburgh.
[73] L. C. Matten,et al. Reconstruction of the frond of Laceya hibernica, a Lyginopterid pteridosperm from the uppermost Devonian of Ireland , 1996 .
[74] J. G. Long. Some Lower Carboniferous pteridosperm cupules bearing ovules and microsporangia , 1977, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.
[75] W. Martin,et al. Molecular Data from the Chloroplast rpoC1 Gene Suggest a Deep and Distinct Dichotomy of Contemporary Spermatophytes into Two Monophyla: Gymnosperms (Including Gnetales) and Angiosperms , 1999, Journal of Molecular Evolution.
[76] M. Chase,et al. The Families and Genera of Cycads: A Molecular Phylogenetic Analysis of Cycadophyta Based on Nuclear and Plastid DNA Sequences , 2003, International Journal of Plant Sciences.
[77] M. Frohlich. Recent Developments Regarding the Evolutionary Origin of Flowers , 2006 .
[78] E. M. Friis,et al. Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China , 2003, Plant Systematics and Evolution.
[79] M. Donoghue,et al. Fossils and seed plant phylogeny reanalyzed , 1992, Brittonia.
[80] T. Taylor,et al. Petrified stems bearing Dicroidium leaves from the Triassic of Antarctica , 1993 .
[81] G. Rothwell,et al. Functional morphology and homologies of gymnospermous ovules: evidence from a new species of Stephanospermum (Medullosales) , 1995 .
[82] J. G. Long. Observations on Carboniferous seeds of Mitrospermum, Conostoma and Lagenostoma , 1977, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.
[83] J. Palmer,et al. Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[84] J. Palmer,et al. Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. , 2000, Molecular biology and evolution.
[85] G. Theißen,et al. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. , 2003, Molecular phylogenetics and evolution.
[86] P. Forey. PhyloCode-pain, no gain , 2002 .
[87] G. Rothwell,et al. Barthelia furcata gen. et sp. nov., with a Review of Paleozoic Coniferophytes and a Discussion of Coniferophyte Systematics , 2001, International Journal of Plant Sciences.
[88] K. Nixon,et al. On the Other “Phylogenetic Systematics” , 2000, Cladistics : the international journal of the Willi Hennig Society.
[89] R. Schmid. ELECTRON MICROSCOPY OF WOOD OF CALLIXYLON AND CORDAITES , 1967 .
[90] J. Doyle. Seed Plant Phylogeny and the Relationships of Gnetales , 1996, International Journal of Plant Sciences.
[91] J. G. Burleigh,et al. Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. , 2004, American journal of botany.
[92] J. G. Long. IX.—Stamnostoma huttonense gen. et sp. nov.—a Pteridosperm seed and cupule from the Calciferous Sandstone Series of Berwickshire , 1960, Transactions of the Royal Society of Edinburgh.
[93] C. B. Beck. Current status of the Progymnospermopsida , 1976 .
[94] O. Béthoux,et al. Morphology and growth habit of Dicksonites pluckenetii from the Upper Carboniferous of Graissessac (France) , 2002 .
[95] J. G. Long. XV.—Some Pteridosperm Seeds from the Calciferous Sandstone Series of Berwickshire , 1961, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.
[96] T. Taylor,et al. The Biology and Evolution of Fossil Plants , 1993 .
[97] J. G. Long. On the Prothallus of Lagenostoma ovoides Will , 1944 .
[98] G. Rothwell,et al. Structure and relationships of primitive conifers , 1991 .
[99] H. H. Thomas. The Caytoniales, a New Group of Angiospermous Plants from the Jurassic Rocks of Yorkshire , 1925 .
[100] G. Rothwell,et al. Characterizing the Most Primitive Seed Ferns. I. A Reconstruction of Elkinsia polymorpha , 1992, International Journal of Plant Sciences.
[101] E. M. Friis,et al. On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[102] T. Taylor,et al. Devonian spore ultrastructure: Rhabdosporites , 1996 .
[103] C. B. Beck. TETRAXYLOPTERIS SCHMIDTII GEN. ET SP. NOV., A PROBABLE PTERIDOSPERM PRECURSOR FROM THE DEVONIAN OF NEW YORK , 1957 .
[104] Kevin C. Nixon,et al. A Reevaluation of Seed Plant Phylogeny , 1994 .
[105] M. Källersjö,et al. Taxon sampling and seed plant phylogeny , 2002, Cladistics : the international journal of the Willi Hennig Society.
[106] T. Taylor,et al. Anatomy of umkomasia (corystospermales) from the triassic of antarctica. , 2002, American journal of botany.
[107] A. Zharkikh,et al. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. , 1997, Molecular biology and evolution.
[108] J. Hilton,et al. Reinvestigation of Cardiocarpus minor (Wang) Li nomen nudum from the Lower Permian of China and its implications for seed plant taxonomy, systematics and phylogeny , 2003 .
[109] B. Axsmith,et al. The structure and phylogenetic significance of the conifer Pseudohirmerella delawarensis nov. comb. from the Upper Triassic of North America , 2004 .
[110] R. Bateman,et al. A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 1. Floristics and the development of whole-plant concepts , 1990, Transactions of the Royal Society of Edinburgh: Earth Sciences.
[111] William Crawford Williamson,et al. VII. On the organization of the fossil plants of the coal-measures.―Part VIII. Ferns (continued) and gymnospermous stems and seeds , 1877, Philosophical Transactions of the Royal Society of London.
[112] E. M. Friis,et al. Archaefructus--angiosperm precursor or specialized early angiosperm? , 2003, Trends in plant science.
[113] R. Olmstead,et al. Inference of higher-order relationships in the cycads from a large chloroplast data set. , 2003, Molecular phylogenetics and evolution.
[114] Zhiduan Chen,et al. Morphology and affinities of an Early Cretaceous Ephedra (Ephedraceae) from China. , 2005, American journal of botany.
[115] G. Rothwell,et al. Morphology, Systematics, and Paleoecology of Paleozoic Fossil Plants: Mesoxylon priapi, sp. nov. (Cordaitales) , 1985 .
[116] S. Scheckler,et al. ANATOMY AND RELATIONSHIPS OF SOME DEVONIAN PROGYMNOSPERMS FROM NEW YORK , 1971 .
[117] R. Spicer,et al. Anatomy and palaeoecology of Pseudofrenelopsis and associated conifers in the English Wealden , 1981 .
[118] M. Benton. Stems, nodes, crown clades, and rank‐free lists: is Linnaeus dead? , 2000, Biological reviews of the Cambridge Philosophical Society.
[119] M. Källersjö,et al. Seed Plant Relationships and the Systematic Position of Gnetales Based on Nuclear and Chloroplast DNA: Conflicting Data, Rooting Problems, and the Monophyly of Conifers , 2002, International Journal of Plant Sciences.
[120] J. Doyle,et al. Seed ferns and the origin of angiosperms , 2006 .
[121] H. Won,et al. Horizontal gene transfer from flowering plants to Gnetum , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[122] D. Scott. XXVII.—Fossil Plants of the Calamopitys Type, from the Carboniferous Rocks of Scotland , 1925, Transactions of the Royal Society of Edinburgh.
[123] R. Bateman,et al. HETEROSPORY: THE MOST ITERATIVE KEY INNOVATION IN THE EVOLUTIONARY HISTORY OF THE PLANT KINGDOM , 1994 .
[124] M. Trivett. Growth Architecture, Structure, and Relationships of Cordaixylon iowensis Nov. comb. (Cordaitales) , 1992, International Journal of Plant Sciences.
[125] G. Rothwell. The callistophytales (Pteridospermopsida): Reproductively sophisticated paleozoic gymnosperms , 1981 .
[126] T. Delevoryas,et al. A New Pteridosperm from Upper Pennsylvanian Deposits of North America , 1954 .
[127] T. Taylor,et al. Mesozoic seed ferns: Old paradigms, new discoveries1 , 2006 .
[128] F. W. Oliver,et al. On the Structure and Affinities of the Palaeozoic Seeds of the Conostoma Group , 1911 .
[129] Wilson N. Stewart. Paleobotany and the Evolution of Plants , 1983 .
[130] C. M. Berry,et al. A new species of Tetraxylopteris (Aneurophytales) from the Devonian of Venezuela , 2005 .
[131] M. Krings,et al. CONIFER POLLEN CONES FROM THE CRETACEOUS OF ARKANSAS: IMPLICATIONS FOR DIVERSITY AND REPRODUCTION IN THE CHEIROLEPIDIACEAE , 2004 .
[132] J. G. Long. XVII.—Some Specimens of Stenomyelon and Kalymma from the Calciferous Sandstone Series of Berwickshire , 1963, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.
[133] K. Pigg,et al. Palaeobotany: Swimming sperm in an extinct Gondwanan plant , 2003, Nature.
[134] C. B. Beck. THE APPEARANCE OF GYMNOSPERMOUS STRUCTURE , 1970 .
[135] L. C. Matten,et al. Studies on the cupulate seed genus Hydrasperma Long from Berwickshire and East Lothian in Scotland and County Kerry in Ireland , 1980 .
[136] M. Donoghue,et al. The importance of fossils in elucidating seed plant phylogeny and macroevolution , 1987 .
[137] G. Rothwell. New interpretations of the earliest conifers , 1982 .
[138] J. G. Long. 12.—Further Observations on some Lower Carboniferous Seeds and Cupules , 1975, Transactions of the Royal Society of Edinburgh.
[139] Cheng-Sen Li,et al. Reinvestigation of Nystroemia pectiniformis Halle, an enigmatic seed plant from the Upper Permian of China , 2003 .
[140] B. Meyer-Berthaud,et al. The diversification of early arborescent seed ferns , 2006 .
[141] M. Hasebe,et al. Phylogeny of gymnosperms inferred fromrbcL gene sequences , 1992, The botanical magazine = Shokubutsu-gaku-zasshi.
[142] G. Rothwell,et al. Thucydiaceae Fam. Nov., with a Review and Reevaluation of Paleozoic Walchian Conifers , 2001, International Journal of Plant Sciences.
[143] Michael J. Donoghue,et al. Seed plant phylogeny and the origin of angiosperms: An experimental cladistic approach , 1986, The Botanical Review.
[144] R. Bateman. EVOLUTIONARY‐DEVELOPMENTAL CHANGE IN THE GROWTH ARCHITECTURE OF FOSSIL RHIZOMORPHIC LYCOPSIDS: SCENARIOS CONSTRUCTED ON CLADISTIC FOUNDATIONS , 1994 .
[145] D. Maddison,et al. MacClade 4: analysis of phy-logeny and character evolution , 2003 .
[146] W. Stein,et al. A Reinvestigation of Stenomyelon from the Late Tournaisian of Scotland , 1995, International Journal of Plant Sciences.
[147] J. Hilton,et al. Callospermarion ovules from the Early Permian of northern China: palaeofloristic and palaeogeographic significance of callistophytalean seed-ferns in the Cathaysian flora , 2002 .
[148] T. Taylor,et al. New perspectives on the Mesozoic seed fern order Corystospermales based on attached organs from the Triassic of Antarctica. , 2000, American journal of botany.
[149] J. Palmer,et al. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[150] D. Maddison. The discovery and importance of multiple islands of most , 1991 .
[151] J. Doyle. Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. , 1998, Molecular phylogenetics and evolution.
[152] G. Rothwell,et al. Diversity Among Paleozoic Cordaitales: The Vascular Architecture of Mesoxylon birame Baxter , 1988, Botanical Gazette.