Bioaugmentation with Enterococcus casseliflavus: A Hydrogen-Producing Strain Isolated from Citrus Peel Waste

[1]  E. Trably,et al.  Enhancement of mass transfer conditions to increase the productivity and efficiency of dark fermentation in continuous reactors , 2019, Fuel.

[2]  I. Sakamoto,et al.  Bacillus sp. isolated from banana waste and analysis of metabolic pathways in acidogenic systems in hydrogen production. , 2019, Journal of environmental management.

[3]  I. Valdez‐Vazquez,et al.  Enhanced hydrogen production from lignocellulosic substrates via bioaugmentation with Clostridium strains , 2019, Industrial Crops and Products.

[4]  F. P. Camargo,et al.  Influence of alkaline peroxide assisted and hydrothermal pretreatment on biodegradability and bio-hydrogen formation from citrus peel waste , 2019, International Journal of Hydrogen Energy.

[5]  M. Alves,et al.  Hydrogen Production by Clostridium cellulolyticum a Cellulolytic and Hydrogen-Producing Bacteria Using Sugarcane Bagasse , 2019 .

[6]  F. Ahmad,et al.  Hydrothermal processing of biomass for anaerobic digestion – A review , 2018, Renewable and Sustainable Energy Reviews.

[7]  A. Susilowati,et al.  Isolation of Cellulolytic Lactic-Acid Bacteria from Mentok (Anas moschata) Gastro-Intestinal Tract , 2018, Tropical Animal Science Journal.

[8]  W. Schmidell,et al.  Impact of glucose concentration on productivity and yield of hydrogen production by the new isolateClostridium beijerinckiiBr21 , 2018, The Canadian Journal of Chemical Engineering.

[9]  Karolina Kucharska,et al.  Hydrogen production from biomass using dark fermentation , 2018, Renewable and Sustainable Energy Reviews.

[10]  C. Soraya,et al.  The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia , 2018, F1000Research.

[11]  Orhan Ince,et al.  Bioaugmentation with Clostridium thermocellum to enhance the anaerobic biodegradation of lignocellulosic agricultural residues. , 2018, Bioresource technology.

[12]  Chiu-Yue Lin,et al.  Anaerobic hydrogen production from unhydrolyzed mushroom farm waste by indigenous microbiota. , 2017, Journal of bioscience and bioengineering.

[13]  I. Valdez‐Vazquez,et al.  A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation , 2017 .

[14]  Edson Luiz Silva,et al.  Review of Continuous Fermentative Hydrogen-Producing Bioreactors from Complex Wastewater , 2017 .

[15]  Rodrigo Sequinel,et al.  Hydrogen bioproduction with Enterobacter sp. isolated from brewery wastewater , 2017 .

[16]  I. Sakamoto,et al.  BIOCONVERSION OF CELLULOSE INTO HYDROGEN, BIOGAS AND ORGANIC ACIDS USING MICROBIAL CONSORTIUM FROM A PULP AND PAPER MILL WASTEWATER TREATMENT PLANT , 2017 .

[17]  Jianlong Wang,et al.  Characterization and hydrogen production performance of a novel strain Enterococcus faecium INET2 isolated from gamma irradiated sludge , 2016 .

[18]  F. Tan,et al.  Enhancement of biogas and methanization of citrus waste via biodegradation pretreatment and subsequent optimized fermentation , 2016 .

[19]  Xavier Flotats,et al.  Effect of limonene on batch anaerobic digestion of citrus peel waste , 2016 .

[20]  Gopalakrishnan Kumar,et al.  Enhancement of biofuel production via microbial augmentation: The case of dark fermentative hydrogen , 2016 .

[21]  Dong Li,et al.  Comparison of micro-aerobic and anaerobic fermentative hydrogen production from corn straw , 2016 .

[22]  H. König,et al.  Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants. , 2016, Journal of biotechnology.

[23]  F. Pirozzi,et al.  Effect of the concentration of essential oil on orange peel waste biomethanization: Preliminary batch results. , 2016, Waste management.

[24]  Germán Buitrón,et al.  Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium , 2015 .

[25]  N. Ács,et al.  Bioaugmentation of biogas production by a hydrogen-producing bacterium. , 2015, Bioresource technology.

[26]  Piet N.L. Lens,et al.  A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products , 2015 .

[27]  H. Bae,et al.  A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. , 2015 .

[28]  Liejin Guo,et al.  Characterization on hydrogen production performance of a newly isolated Clostridium beijerinckii YA001 using xylose , 2014 .

[29]  B. Ruiz,et al.  Citrus essential oils and their influence on the anaerobic digestion process: an overview. , 2014, Waste management.

[30]  Yebo Li,et al.  Pretreatment of lignocellulosic biomass for enhanced biogas production. , 2014 .

[31]  Anjana Pandey,et al.  Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03 , 2014 .

[32]  J. Steyer,et al.  Bio-hydrogen production during acidogenic fermentation in a multistage stirred tank reactor , 2013 .

[33]  Seung Gon Wi,et al.  Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment , 2013 .

[34]  M. F. R. Rosa,et al.  Biodegradabilidade anaeróbia dos resíduos provenientes das cadeias produtivas dos biocombustíveis: bagaço de cana-de-açúcar. , 2013 .

[35]  J. Puhakka,et al.  Dark fermentative hydrogen production from xylose by a hot spring enrichment culture , 2012 .

[36]  M. Taherzadeh,et al.  Methane production from citrus wastes: process development and cost estimation , 2012 .

[37]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[38]  Francisco J. Fernández,et al.  Influence of pH, temperature and volatile fatty acids on hydrogen production by acidogenic fermentat , 2011 .

[39]  Z. Cui,et al.  Characterization of a microbial consortium capable of degrading lignocellulose. , 2011, Bioresource technology.

[40]  J. Vu,et al.  Enterococcus: review of its physiology, pathogenesis, diseases and the challenges it poses for clinical microbiology , 2011, Frontiers in Biology.

[41]  Ian P. Thompson,et al.  Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85 , 2010, Applied Microbiology and Biotechnology.

[42]  Ian P Thompson,et al.  Biorefinery of waste orange peel , 2010, Critical reviews in biotechnology.

[43]  N. Ren,et al.  Bio-hydrogen production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49 , 2009, Biotechnology Letters.

[44]  Luis Isidoro Romero-García,et al.  Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. , 2008, Bioresource technology.

[45]  Karel Grohmann,et al.  Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. , 2007, Bioresource technology.

[46]  Herbert H. P. Fang,et al.  Fermentative Hydrogen Production From Wastewater and Solid Wastes by Mixed Cultures , 2007 .

[47]  A. F. Iemma,et al.  Planejamento de experimentos e otimização de processos: uma estratégia sequencial de planejamentos , 2005 .

[48]  S. Martínez,et al.  Thermal inactivation of Enterococcus faecium: effect of growth temperature and physiological state of microbial cells , 2003, Letters in applied microbiology.

[49]  Y. Wee,et al.  Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1 , 2003 .

[50]  D. L. Hawkes,et al.  Sustainable fermentative hydrogen production: challenges for process optimisation , 2002 .

[51]  S. Haruta,et al.  Construction of a stable microbial community with high cellulose-degradation ability , 2002, Applied Microbiology and Biotechnology.

[52]  M. Huycke Physiology of Enterococci , 2002 .

[53]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[54]  Awwa,et al.  Standard Methods for the examination of water and wastewater , 1999 .

[55]  J. Nicell,et al.  Model development for horseradish peroxidase catalyzed removal of aqueous phenol. , 1997, Biotechnology and bioengineering.

[56]  E. Parente,et al.  Growth and bacteriocin production by Enterococcus faecium DPC1146 in batch and continuous culture , 1997, Journal of Industrial Microbiology and Biotechnology.

[57]  K. A. Taylor,et al.  A simple colorimetric assay for muramic acid and lactic acid , 1996 .

[58]  M. H. Zwietering,et al.  Modeling of Bacterial Growth with Shifts in Temperature , 1994, Applied and environmental microbiology.

[59]  S. Goodison,et al.  16S ribosomal DNA amplification for phylogenetic study , 1991, Journal of bacteriology.

[60]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[61]  J L Nation,et al.  A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. , 1983, Stain technology.

[62]  F. Smith,et al.  COLORIMETRIC METHOD FOR DETER-MINATION OF SUGAR AND RELATED SUBSTANCE , 1956 .