Plasmonic coupling in noble metal nanostructures

[1]  M. El-Sayed,et al.  Effect of orientation on plasmonic coupling between gold nanorods. , 2009, ACS nano.

[2]  The dependence of the plasmon field induced nonradiative electronic relaxation mechanisms on the gold shell thickness in vertically aligned CdTe-Au core-shell nanorods. , 2009, Nano letters.

[3]  M. El-Sayed,et al.  Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields. , 2009, Nano letters.

[4]  Romain Quidant,et al.  Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. , 2009, ACS nano.

[5]  M. El-Sayed,et al.  Surface-Enhanced Raman Scattering Enhancement by Aggregated Silver Nanocube Monolayers Assembled by the Langmuir−Blodgett Technique at Different Surface Pressures , 2009 .

[6]  Ronald Walsworth,et al.  Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals. , 2009, Nano letters.

[7]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[8]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[9]  M. El-Sayed,et al.  Plasmon field effects on the nonradiative relaxation of hot electrons in an electronically quantized system: CdTe-Au core-shell nanowires. , 2008, Nano letters.

[10]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[11]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[12]  Prashant K. Jain,et al.  Surface Plasmon Coupling and Its Universal Size Scaling in Metal Nanostructures of Complex Geometry: Elongated Particle Pairs and Nanosphere Trimers , 2008 .

[13]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[14]  Prashant K. Jain,et al.  Surface Plasmon Resonance Sensitivity of Metal Nanostructures : Physical Basis and Universal Scaling in Metal Nanoshells , 2007 .

[15]  Wei Qian,et al.  The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs. , 2007, Nano letters.

[16]  P. Jain,et al.  Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. , 2007, Nano letters.

[17]  P. Jain,et al.  Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems , 2007 .

[18]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[19]  Wei Qian,et al.  Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. , 2007, Nano letters.

[20]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[21]  Joseph Irudayaraj,et al.  Multiplex biosensor using gold nanorods. , 2007, Analytical chemistry.

[22]  A Paul Alivisatos,et al.  Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes , 2006, Proceedings of the National Academy of Sciences.

[23]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[24]  M. Ford,et al.  Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods. , 2006, Physical chemistry chemical physics : PCCP.

[25]  Peter Nordlander,et al.  Plasmon modes of nanosphere trimers and quadrumers. , 2006, The journal of physical chemistry. B.

[26]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[27]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.

[28]  Wei Qian,et al.  Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold-thiol bond. , 2006, Journal of the American Chemical Society.

[29]  K. G. Thomas,et al.  Gold Nanorods to Nanochains: Mechanistic Investigations on Their Longitudinal Assembly Using α,ω-Alkanedithiols and Interplasmon Coupling , 2006 .

[30]  P. Jain,et al.  Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates. , 2006, The journal of physical chemistry. B.

[31]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[32]  D. A. Stuart,et al.  Surface Enhanced Raman Spectroscopy: New Materials, Concepts, Characterization Tools, and Applications , 2005 .

[33]  A Paul Alivisatos,et al.  Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. , 2005, Nano letters.

[34]  Wei Qian,et al.  The optically detected coherent lattice oscillations in silver and gold monolayer periodic nanoprism arrays: the effect of interparticle coupling. , 2005, The journal of physical chemistry. B.

[35]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[36]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[37]  Harry A. Atwater,et al.  Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles , 2005 .

[38]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[39]  G. Schatz,et al.  Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. , 2005, The journal of physical chemistry. B.

[40]  N J Halas,et al.  Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Prashant V. Kamat,et al.  Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods , 2004 .

[42]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[43]  M. El-Sayed Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. , 2004, Accounts of chemical research.

[44]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[45]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[46]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[47]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .

[48]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[49]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[50]  Mostafa A. El-Sayed,et al.  Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods† , 2003 .

[51]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[52]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[53]  Younan Xia,et al.  Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. , 2002, Analytical chemistry.

[54]  Colby A. Foss,et al.  The Effect of Mutual Orientation on the Spectra of Metal Nanoparticle Rod−Rod and Rod−Sphere Pairs , 2002 .

[55]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[56]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[57]  J. Kottmann,et al.  Retardation-induced plasmon resonances in coupled nanoparticles. , 2001, Optics letters.

[58]  K. Lance Kelly,et al.  Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers , 2001 .

[59]  Louis E. Brus,et al.  Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules , 2000 .

[60]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[61]  M. El-Sayed,et al.  The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal , 2000 .

[62]  A. Henglein,et al.  Photophysics and spectroscopy of metal particles , 2000 .

[63]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[64]  Mostafa A. El-Sayed,et al.  Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation , 1999 .

[65]  M. El-Sayed,et al.  Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant , 1999 .

[66]  T. Pal,et al.  Silver nanoparticle aggregate formation by a photochemical method and its application to SERS analysis , 1999 .

[67]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[68]  Ludwig Brand,et al.  Intramolecular Resonance Dipole−Dipole Interactions in a Profluorescent Protease Substrate , 1998 .

[69]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[70]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[71]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[72]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[73]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[74]  Paul Mulvaney,et al.  Effect of the Solution Refractive Index on the Color of Gold Colloids , 1994 .

[75]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[76]  Shen,et al.  Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. , 1986, Physical review. B, Condensed matter.

[77]  Theo Rasing,et al.  Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation , 1984 .

[78]  G. Schatz Theoretical Studies of Surface Enhanced Raman Scattering , 1984 .

[79]  Yaochun Shen,et al.  SURFACE-ENHANCED SECOND-HARMONIC GENERATION AND RAMAN SCATTERING , 1983 .

[80]  D. Griffiths Introduction to Electrodynamics , 2017 .

[81]  E. Burstein,et al.  Luminescence of dye molecules adsorbed at a Ag surface , 1981 .

[82]  M. Kasha,et al.  The exciton model in molecular spectroscopy , 1965 .

[83]  Michael Kasha,et al.  Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates1, 2 , 1963 .

[84]  R. Gans,et al.  Über die Form ultramikroskopischer Goldteilchen , 1912 .

[85]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .