Abstract Argumentation via Monadic Second Order Logic

We propose the formalism of Monadic Second Order Logic (MSO) as a unifying framework for representing and reasoning with various semantics of abstract argumentation. We express a wide range of semantics within the proposed framework, including the standard semantics due to Dung, semi-stable, stage, cf2, and resolution-based semantics. We provide building blocks which make it easy and straight-forward to express further semantics and reasoning tasks. Our results show that MSO can serve as a lingua franca for abstract argumentation that directly yields to complexity results. In particular, we obtain that for argumentation frameworks with certain structural properties the main computational problems with respect to MSO-expressible semantics can all be solved in linear time. Furthermore, we provide a novel characterization of resolution-based grounded semantics.

[1]  Pietro Baroni,et al.  Semantics of Abstract Argument Systems , 2009, Argumentation in Artificial Intelligence.

[2]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[3]  Stefan Woltran,et al.  Reasoning in Argumentation Frameworks Using Quantified Boolean Formulas , 2006, COMMA.

[4]  Bruno Courcelle,et al.  Context-free Handle-rewriting Hypergraph Grammars , 1990, Graph-Grammars and Their Application to Computer Science.

[5]  Stefano Bistarelli,et al.  Finding partitions of arguments with Dung's properties via SCSPs , 2011, CILC.

[6]  Stefan Woltran,et al.  Towards fixed-parameter tractable algorithms for abstract argumentation , 2012, Artif. Intell..

[7]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[8]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[9]  Trevor J. M. Bench-Capon,et al.  Argumentation in artificial intelligence , 2007, Artif. Intell..

[10]  Stefan Woltran,et al.  cf2 Semantics Revisited , 2010, COMMA.

[11]  Georg Gottlob,et al.  Bounded treewidth as a key to tractability of knowledge representation and reasoning , 2006, Artif. Intell..

[12]  Dov M. Gabbay,et al.  A Logical Account of Formal Argumentation , 2009, Stud Logica.

[13]  Stefan Woltran,et al.  Reasoning in Argumentation Frameworks of Bounded Clique-Width , 2010, COMMA.

[14]  Philippe Besnard,et al.  Checking the acceptability of a set of arguments , 2004, NMR.

[15]  Francesca Toni,et al.  Argumentation and answer set programming , 2011 .

[16]  Alexander Langer,et al.  Evaluation of an MSO-Solver , 2012, ALENEX.

[17]  Stefan Woltran,et al.  Towards Fixed-Parameter Tractable Algorithms for Argumentation , 2010, KR.

[18]  Pietro Baroni,et al.  On the resolution-based family of abstract argumentation semantics and its grounded instance , 2011, Artif. Intell..

[19]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[20]  Pietro Baroni,et al.  SCC-recursiveness: a general schema for argumentation semantics , 2005, Artif. Intell..

[21]  Joachim Kneis,et al.  Courcelle's theorem - A game-theoretic approach , 2011, Discret. Optim..

[22]  Georg Gottlob,et al.  Fixed-Parameter Algorithms For Artificial Intelligence, Constraint Satisfaction and Database Problems , 2007, Comput. J..

[23]  Stefan Woltran,et al.  Complexity of semi-stable and stage semantics in argumentation frameworks , 2010, Inf. Process. Lett..

[24]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[25]  Paul E. Dunne,et al.  Computational properties of argument systems satisfying graph-theoretic constraints , 2007, Artif. Intell..

[26]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[27]  Stefan Woltran,et al.  Answer-set programming encodings for argumentation frameworks , 2010, Argument Comput..

[28]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[29]  Leila Amgoud,et al.  Argumentation frameworks as constraint satisfaction problems , 2011, Annals of Mathematics and Artificial Intelligence.

[30]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[31]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[32]  Emil Weydert Semi-stable Extensions for Infinite Frameworks , 2011 .