On Solving Boolean Combinations of UTVPI Constraints

We consider the satisabilit y problem for Boolean combinations of unit two variable per inequality (UTVPI) constraints. A UTVPI constraint is linear constraint containing at most two variables with non-zero coecien ts, where furthermore those coecien ts must be either 1 or 1. We prove that if a satisfying solution exists, then there is a solution with each variable taking values in [ n (bmax + 1); n (bmax + 1)], where n is the number of variables, and bmax is the maximum over the absolute values of constants appearing in the constraints. This solution bound improves over previously obtained bounds by an exponential factor. Our result can be used in a nite instantiation-based approach to deciding satisabilit y of UTVPI formulas. An experimental evaluation demonstrates the eciency of such an approach. One of our key results is to show that an integer point inside a UTVPI polyhedron, if one exists, can be obtained by rounding a vertex. As a corollary of this result, we also obtain a polynomial-time algorithm for approximating optima of UTVPI integer programs to within an additive factor.

[1]  Kenneth Roe The Heuristic Theorem Prover SMT-COMP'06 submission , 2006 .

[2]  J. Gathen,et al.  A bound on solutions of linear integer equalities and inequalities , 1978 .

[3]  Clyde L. Monma,et al.  On the Computational Complexity of Integer Programming Problems , 1978 .

[4]  Marco Bozzano,et al.  MathSAT: Tight Integration of SAT and Mathematical Decision Procedures , 2005, Journal of Automated Reasoning.

[5]  Cesare Tinelli,et al.  DPLL( T): Fast Decision Procedures , 2004, CAV.

[6]  George B. Dantzig,et al.  Fourier-Motzkin Elimination and Its Dual , 1973, J. Comb. Theory A.

[7]  Peter F. Patel-Schneider,et al.  DLP System Description , 1998, Description Logics.

[8]  Joseph Naor,et al.  Simple and Fast Algorithms for Linear and Integer Programs With Two Variables per Inequality , 1994, SIAM J. Comput..

[9]  Armin Biere,et al.  Effective Preprocessing in SAT Through Variable and Clause Elimination , 2005, SAT.

[10]  I. Borosh,et al.  Bounds on positive integral solutions of linear Diophantine equations , 1976 .

[11]  Michael J. Maher,et al.  Beyond Finite Domains , 1994, PPCP.

[12]  Sanjit A. Seshia,et al.  Deciding quantifier-free Presburger formulas using parameterized solution bounds , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[13]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.

[14]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[15]  Joseph Naor,et al.  Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality , 1993, Math. Program..

[16]  David L. Dill,et al.  An Online Proof-Producing Decision Procedure for Mixed-Integer Linear Arithmetic , 2003, TACAS.

[17]  L. D. Moura,et al.  The YICES SMT Solver , 2006 .

[18]  Albert Oliveras,et al.  Decision Procedures for SAT, SAT Modulo Theories and Beyond. The BarcelogicTools , 2005, LPAR.

[19]  Albert Oliveras,et al.  DPLL(T) with Exhaustive Theory Propagation and Its Application to Difference Logic , 2005, CAV.

[20]  Karem A. Sakallah,et al.  A Scalable Method for Solving Satisfiability of Integer Linear Arithmetic Logic , 2005, SAT.

[21]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[22]  Shuvendu K. Lahiri,et al.  Zapato: Automatic Theorem Proving for Predicate Abstraction Refinement , 2004, CAV.

[23]  Bruno Dutertre,et al.  A Fast Linear-Arithmetic Solver for DPLL(T) , 2006, CAV.

[24]  Sanjit A. Seshia,et al.  Modeling and Verifying Systems Using a Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted Functions , 2002, CAV.

[25]  Christos H. Papadimitriou,et al.  On the complexity of integer programming , 1981, JACM.

[26]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[27]  K. Subramani,et al.  On deciding the non‐emptiness of 2SAT polytopes with respect to First Order Queries , 2004, Math. Log. Q..

[28]  Antoine Miné,et al.  The octagon abstract domain , 2001, High. Order Symb. Comput..

[29]  Antoine Mid The Octagon Abstract Domain , 2001 .

[30]  Shuvendu K. Lahiri,et al.  An Efficient Decision Procedure for UTVPI Constraints , 2005, FroCoS.

[31]  Karem A. Sakallah,et al.  Ario: A Linear Integer Arithmetic Logic Solver , 2006, 2006 Formal Methods in Computer Aided Design.

[32]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.